Abstract:
A spectrophotometer has a first photodetector (24) and a second photodetector (25) which is displaced spatially from the first photodetector in the direction of increasing wavelength in the spectrum. At any given time the second photodetector receives light at a wavelength which is substantially greater than that being received simultaneously by the first photodetector at that time. The first photodetector has a first range of wavelengths over which it is operable and a first upper operating limit, and the second photodetector has a second range of wavelengths over which it is operable and a second upper operating limit, the second range overlapping the first range and the second upper operating limit being greater than the first upper operating limit. Thus the range of operation is extended, and data in two different ranges is processed simultaneously. The spectrophotometer comprises a housing (1) containing a light source (11), a monochromator (15, 16, 18) and the photodetectors, there being a fibre optic connected to a probe (2) for transmitting light from the light source to a sample to be analysed and receiving light from the sample. Optical components are mounted to a chassis (26) of the housing rigidly, the chassis being connected to the housing by shock absorbing mounts (28, 29). The light source is mounted to the housing by means of an adjuster (24) providing for adjustment laterally with respect to the optical axis of the light source.
Abstract:
Die Erfindung betrifft eine inline-Photometervorrichrung mit einer Lichtquelle (6), einem davon beabstandeten Photodetektur (7), einer im Strahlengang (8) zwischen Lichtquelle (6) und Photdetektor (7) angeordneten, von einem zu vermessenden Fluid dürchfließbaren Messzelle (2), und mit einer Kalibriervorrichtung (9) zur Kalibrierung und/oder Validierung der Inline-Photornetervorrichtung (1), wobei die Kalibriervorrichtung (9) Haltemittel (10) zur Anordnung eines Referenzteils im Strahlengang aufweist. Erfindungsgemäß ist vorgesehen, dass das Referenzteil (11) mit einem Referenzfluid (12) gefüllt oder befüllbar ist.
Abstract:
The invention relates to an optical sensor (1) for determining particle and/or dye concentrations in liquid or gaseous media and to a method for operating the same. The optical sensor (1) comprises at least one measuring head. The measuring head consists of an emitter unit (2) with a semiconductor emitting element (9), which emits visible emission light beams (8), and with a receiver unit (3) with a semiconductor receiving element (10). The portion of the emission light beams (8), which pass through an absorption section containing liquid or gaseous medium, is guided onto the receiving element (10). An evaluating unit (6) is coupled to the measuring head via electric leads (4, 4'), and the received signals, which are present at the output of the semiconductor receiving element (10), are evaluated inside said evaluating unit in order to determine the particle or die concentration.
Abstract:
In an automatic optical measurement method according to the invention, with a movable reflection plate 6 moved to place under an optical axis, light projected from a light projecting portion 3a is received by a light receiving portion 3b via the movable reflection plate 6, a stationary reflection plate 11 and the movable reflection plate 6, whereas with the movable reflection plate 6 moved away from the optical axis and a reference 8 set on a sample stage 10, light projected from the light projecting portion 3a is received by the light receiving portion 3b via the reference 8 whereby a ratio between the intensities of the received lights is determined. During a sample measurement, light projected from the light projecting portion 3a with the movable reflection plate 6 moved to place under the optical axis is received by the light receiving portion 3b via the movable reflection plate 6, stationary reflection plate 11 and movable reflection plate 6 so that the intensity of light thus received and the above ratio are used for estimating an intensity of light to be measured with the reference, the estimated intensity of light being used for correcting an intensity of light received via a sample.
Abstract:
Verfahren und Einrichtung zur verzögerungsfreien Messung des Lambda und/oder Luft/Kraftstoffverhältnisses von Verbrennungseinrichtungen, insbesonders von Brennkraftmaschinen durch Messung bzw. Analyse von einzelnen Komponenten des Kraftstoffes, der zur Verbrennung des Kraftstoffes dienenden Umgebungsluft und des Abgases, wobei die Wasserdampfkonzentration des Abgases und vorzugsweise der Umgebungsluft oder des Versorgungsgases, welches zur Verbrennung des Kraftstoffes dient, gemessen werden, wobei das Lambda und/oder Luft/Kraftstoffverhältnis mit Hilfe dieser Meßwerte und von Daten über die Kraftstoffzusammensetzung errechnet wird.
Abstract:
A method for analyzing fluids by a multi-fluid modulation mode comprises the step of subjecting a plurality of sample fluids (S1, S2, ..., Sn) to a fluid modulation with reference fluids (R1, R2, ..., Rn), respectively, at frequencies (F1, F2, ..., Fn) different to each other. Then, the modulated sample fluids (S1, S2, ..., Sn) are simultaneously and continuously supplied to an analytical portion (A) provided with only one sensor (D). An output signal (O) of said sensor (D) is divided into signal ingredients (O1, O2, ..., On) by signal treatment means (B) for the following rectification and levelling treatment. Thereby analytical values of said respective sample fluids (S1, S2, ..., Sn) are obtained.
Abstract:
Disclosed is a method for preparing dispersion gradients and an SPR injection method for determining full kinetics and affinity analysis in the presence of a competitor molecule. The SPR injection provides a dispersion gradient of two or more samples to a SPR flow cell and detector.
Abstract:
A system and method are described herein for self-referencing a sensor that is used to detect a biomolecular binding event and/or kinetics which occur in a sample solution flowing along side a reference solution in a micron-sized deep flow channel.
Abstract:
A method of measuring light reflected by a test sample with a microscopic photometric system. The test sample placed in an in-focus position of an objective is irradiated, and light reflected by the test sample is measured. Stray light generated by microscopic optics including the objective is measured with the test sample placed in an out-of-focus position of the objective. Light actually reflected by the test sample is determined from a difference between the reflected light and the stray light measured.