Abstract:
There is provided a test method for analysing a body fluid in which a test tape is used in a test device to successively provide analytical test fields stored on the test tape, wherein body fluid is applied by a user to the test field provided at a time and the said test field is photometrically scanned using a measuring unit of the device to record measurement signals. To increase the measurement reliability, it is proposed that a control value is determined from a time-dependent and/or wavelength-dependent change in the measurement signals and that the measurement signals are processed as valid or discarded as erroneous depending on the control value.
Abstract:
A method of characterizing a multi-component mixture for use in a bioprocess operation that includes providing a multi-component mixture standard with pre-determined amounts of known components; performing a Raman Spectroscopy analysis on the multi-component mixture standard; providing a multi-component test mixture from the bioprocess operation; performing a Raman Spectroscopy analysis on the multi-component test mixture; and comparing the analysis of the multi-component mixture standard and the multi-component test mixture to characterize the multi-component test mixture. In one embodiment, the multi-component mixture standard and the multi-component test mixture both comprise one or more of, at least two, at least three of, or each of, a polysaccharide (e.g. sucrose or mannitol), an amino acid (e.g., L-arginine, L-histidine or L-ornithine), a surfactant (e.g. polysorbate 80) and a pH buffer (e.g., a citrate formulation).
Abstract:
The invention relates to a calibration standard (7) for a device (1) for image-based representation of biological material (6) which is excited to luminescence at least regionally during the examination. The device (1) has an illumination unit (2) comprising a radiation source, by which an electromagnetic excitation radiation (15) is emittable. Furthermore, a receptacle (3) is provided, which ensures that the biological material (6) arranged on a carrier (5) is positioned within a beam path of the excitation radiation (15). Moreover, the device has at least one image generating unit (4), which receives luminescence radiation (16) emitted by the biological material (6) on account of the excitation by the excitation radiation (15) and generates an image at least of the regions of the biological material (6) which are excited to luminescence. For calibration purposes, the device has a calibration standard (7), which emits a calibration radiation on account of the excitation by the excitation radiation (15), which calibration radiation is captured by the image generating unit (4), and a calibration signal is generatable in a controller (18) taking account of the captured calibration radiation. The technical solution described is distinguished by the fact that the calibration standard (7) has a housing (9) with, enclosed therein, a substance (12) which is excitable to luminescence, and is fixedly connected to the illumination unit (2) or the receptacle (3) with the aid of a fixing means (19).
Abstract:
The present invention relates to a method for optically determining the concentration of a gas, using at least two luminescent dyes, the first being in-sensitive to the concentration of a gas with respect to the luminescence response (reference dye) and the second being sensitive to the concentration of a gas with respect to the luminescence response (indicator dye), wherein said dyes show different luminescence decay times so that the resultant phase angle is indicative for the concentration of a gas, characterized in that the detected luminescent amplitude of the reference dye at a first moment in time is utilized to correct for sensitivity changes after said moment. The present invention also relates to a corresponding method for quality assessment of the measurement of an optical sensor for determining the concentration of a gas.
Abstract:
Provided herein in an apparatus, including a substrate; a functional layer, wherein the functional layer has a composition characteristic of a workpiece of an analytical apparatus; and pre-determined features configured to calibrate the analytical apparatus. Also provided herein is an apparatus, including a functional layer overlying a substrate; and pre-determined features for calibration of an analytical apparatus configured to measure the surface of a workpiece, wherein the functional layer has a composition similar to the workpiece. Also provided herein is a method, including providing a lithographic calibration standard having a functional layer to an analytical apparatus, wherein the functional layer has a composition characteristic of a workpiece of the analytical apparatus; providing calibration standard specifications to a computer interfaced with the analytical apparatus; and calibrating the analytical apparatus in accordance with calibration standard readings and the calibration standard specifications.
Abstract:
In order to inspect a substrate, an image information of a substrate before applying solder is displayed. Then, at least one inspection region on the substrate is image-captured to obtain an image of the inspection region that is image-captured. Then, image information that is to be displayed is renewed and the renewed image information is displayed. And, in order to inspect a foreign substance, obtained image of the inspection region is compared with a reference image of the substrate. Therefore, an operator can easily catch a region corresponding to a specific region of the image that is displayed, and easily detect a foreign substance on the substrate.
Abstract:
There is provided a test method for analysing a body fluid in which a test tape is used in a test device in order to successively provide analytical test fields stored on the test tape, wherein body fluid is applied by a user to the test field provided at a time and the said test field is photometrically scanned using a measuring unit of the device to record measurement signals. In order to increase the measurement reliability, it is proposed that a control value is determined from a time-dependent and/or wavelength-dependent change in the measurement signals and that the measurement signals are processed as valid or discarded as erroneous depending on the control value.
Abstract:
A multi-wavelength reference microplate for a label-independent optical reader is disclosed. The microplate includes a support plate that supports a plurality of reference wells. At least one of the reference wells is configured as a multi-wavelength reference well having disposed therein two or more resonant waveguide grating sections that respectively reflect two or more different reference resonant wavelengths within the light source wavelength band. Methods for making and using the microplates are also disclosed.
Abstract:
An apparatus for the calibration and quality assurance of a multichannel spectrophotometer, particularly an ELISA spectrophotometer, comprises film selectively exposed in the presence of a color to produce a series of filters having a known first color and linearly increasing optical density. The response of the spectrophotometer is measured against the known color and linearly increasing optical density. Additional filters of at least one additional color permit checking the color response of the spectrophotometer. An algorithm determines whether the response conforms to predetermined conditions. An output is produced to provide a record of the calibration and quality assurance of the spectrophotometer. The invention has particular utility for conducting calibration and quality assurance of ELISA spectrophotometers used in clinical laboratory screening for infectious diseases, such as Hepatitis B. and the AIDS viruses.
Abstract:
Systems for the on-line optical measurement of properties of a translucent moving web, such as paper or plastic, as it is continually produced, colored or otherwise converted. Measured properties include color, reflectance and opacity. A backing roll has a cylindrical or approximately cylindrical surface which comprises at least one optical standard. The roll is positioned such that a circumferential portion of the roll surface contacts the back web surface where the web characteristic is to be measured, with the web curving around the circumferential portion. An optical sensing device is positioned so as to view the front web surface backed by the optical standard or standards. In several embodiments, two sets of reflectance data are collected, one with a "white" optical standard backing and the other with a "black" optical standard backing. The backing roll surface and the optical sensing device can be arranged such that the sensing device either alternately or simultaneously views portions of the front web surface backed by each of the optical standards. In other embodiments, the backing roll has a uniform optical standard surface.