Abstract:
A method of preparing two dimension bent X-ray crystal analyzers in strips feature is provided. A crystal wafer in strips is bonded to a curved substrate which offers the desired focus length. A crystal wafer in strips is pressed against the surface of the substrate forming curved shape by anodic bonding or glue bonding. The bonding is permanently formed between crystal wafer and its substrate surface, which makes crystal wafer has same curvature as previously prepared substrate.
Abstract:
A projection lens of an EUV-lithographic projection exposure system with at least two reflective optical elements each comprising a body and a reflective surface for projecting an object field on a reticle onto an image field on a substrate if the projection lens is exposed with an exposure power of EUV light, wherein the bodies of at least two reflective optical elements comprise a material with a temperature dependent coefficient of thermal expansion which is zero at respective zero cross temperatures, and wherein the absolute value of the difference between the zero cross temperatures is more than 6K.
Abstract:
An X-ray system comprises: a source of an X-ray diverging beam having a central imaging portion and a peripheral treatment-portion; a lens transforming the peripheral treatment portion of the X-ray beam into a converging beam directed to a target; a shutter located between the X-ray source and the target in the central imaging portion of the X-ray radiation; and a detector of imaging radiation after interaction with the target and to provide imaging information of the target.
Abstract:
A mobile transport and shielding apparatus, which holds an x-ray analyzer for transport between operating sites, and also serves as a shielded, operational station for holding the x-ray analyzer during operation thereof. The x-ray analyzer is removably insertable into the apparatus and is operable either within the mobile transport and shielding apparatus, or outside of the apparatus. The apparatus may provide means to control, power, cool, and/or charge the x-ray analyzer during operation of the analyzer; and also means to transport the analyzer (e.g., a handle).
Abstract:
A plasma-generated EUV light source uses an EUV-diffracting collection mirror to channel spectrally pure in-band radiation through an intermediate-focus aperture and through EUV illumination optics. Out-of-band radiation is either undiffracted by the collection mirror or is diffractively scattered away from the aperture. The undiffracted portion, plus plasma-emitted radiation that does not intercept the collection mirror, can be efficiently recycled back to the plasma via retroreflecting mirrors, cat's-eye reflectors, or corner-cube reflectors, to enhance generation of in-band EUV radiation by the plasma.
Abstract:
Methods for receiving a high-energy EUV beam and distributing EUV sub-beams to photolithography scanners and the resulting device are disclosed. Embodiments include receiving a high-energy primary EUV beam at a primary splitting optical assembly; splitting the primary EUV beam into primary EUV sub-beams; reflecting the primary EUV sub-beams to beam-splitting optical arrays; splitting the primary EUV sub-beams into secondary EUV sub-beams; reflecting the secondary EUV sub-beams to EUV distribution optical arrays; and distributing simultaneously the secondary EUV sub-beams to scanners.
Abstract:
Systems and methods are provided for staining tissue with multiple biologically specific heavy metal stains and then performing X-ray imaging, either in projection or tomography modes, using either a plurality of illumination energies or an energy sensitive detection scheme. The resulting energy-weighted measurements can then be used to decompose the resulting images into quantitative images of the distribution of stains. The decomposed images may be false-colored and recombined to make virtual X-ray histology images. The techniques thereby allow for effective differentiation between two or more X-ray dyes, which had previously been unattainable in 3D imaging, particularly 3D imaging of features at the micron resolution scale. While techniques are described in certain example implementations, such as with microtomography, the techniques are scalable to larger fields of view, allowing for use in 3D color, X-ray virtual histology of pathology specimens.
Abstract:
A source-collector device includes a target unit having a target surface of plasma-forming material and a laser unit to generate a beam of radiation directed onto the target surface to form a plasma from said plasma-forming material. A contaminant trap is provided to reduce propagation of particulate contaminants generated by the plasma. A radiation collector includes a one or more grazing-incidence reflectors arranged to collect radiation emitted by the plasma and form a beam therefrom, and a filter is configured to attenuate at least one wavelength range of the beam.
Abstract:
A mobile transport and shielding apparatus, which holds an x-ray analyzer for transport between operating sites, and also serves as a shielded, operational station for holding the x-ray analyzer during operation thereof. The x-ray analyzer is removably insertable into the apparatus and is operable either within the mobile transport and shielding apparatus, or outside of the apparatus. The apparatus may provide means to control, power, cool, and/or charge the x-ray analyzer during operation of the analyzer; and also means to transport the analyzer (e.g., a handle).
Abstract:
An X-ray source comprising: an elongate tubular housing adapted to be fitted into a port of and extend into a chamber containing a sample to be analysed, said housing containing: an electron gun and a target mounted in the housing, the electron gun being arranged to direct electrons to a point on the target such that the target radiates X-rays; and a monochromator arranged to focus X-rays radiated from the target to a focal point on a sample in the chamber; wherein the monochromator is positioned, and comprises a material selected such that the target, the monochromator and the focal point on the sample are substantially in-line within the envelope of the tubular housing.