Abstract:
A method is provided for creating gated filament structures for a field emission display. A multi-layer structure is provided that includes a substrate, an insulating layer, a metal gate layer positioned on a top surface of the insulating layer and a gate encapsulation layer positioned on a top surface of the metal gate layer. A plurality of gates are provided and define a plurality of apertures on the top of the insulating layer. A plurality of spacers are formed in the apertures at their edges on the top surface of the insulating layer. The spacers are used as masks for etching the insulating layer and form a plurality of pores in the insulating layer. The pores are plated with a filament material to create a plurality of filaments. The pores can be overplated to create the plurality of filaments. The filaments are vertically self-aligned in the pores.
Abstract:
An electron emitter contains a gate layer (38), an underlying dielectric layer (36), an intermediate non-insulating layer (34) situated below the dielectric layer, and a lower non-insulating region (32) situated below the intermediate non-insulating layer. A multiplicity of electron-emissive particles (42) are situated over the non-insulating region at the bottom of an opening (40) extending through the three layers. The ratio of the thickness of the dielectric layer to the thickness of the intermediate non-insulating layer is in the range of 1:1 to 4:1, while the ratio of the mean diameter of the opening to the thickness of the intermediate non-insulating layer is in the range 1:1 to 10:1. The presence of the intermediate non-insulating layer improves the collimation of the beam of electrons emitted from the electron-emissive elements. The electron emitter is manufactured according to a simple, readily controllable process.
Abstract:
A flat panel display of a field emission type having a triode (three terminal) structure and useful as a device for displaying visual information is disclosed. The display includes a plurality of corresponding light-emitting anodes and field-emission cathodes, each of the anodes emitting light in response to emission from each of the corresponding cathodes, each of the cathodes including a layer of low work function material having a relatively flat emission surface which includes a plurality of distributed localized electron emission sites and a grid assembly positioned between the corresponding anodes and cathodes to thereby control emission levels to the anodes from the corresponding cathodes. In the preferred embodiment of the invention, the layer of low work function material is amorphic diamond film. The grid assembly includes a conductive layer deposited between the plurality of anodes and cathodes and over interstices between the cathodes, the conductive layer having apertures therein, the cathodes aligned with, and of the same size as, the apertures.
Abstract:
A field emitter comprising an exposed wide band gap emission area in contact with and protruding from a planar surface of a conductive metal, and a method of making is disclosed. Suitable wide band gap materials (2.5-7.0 electron-volts) include diamond, aluminum-nitride and gallium-nitride; suitable conductive metals include titanium, tungsten, gold and graphite. The method includes disposing the wide band gap material on a substrate, disposing the conductive metal on the wide band gap material, and etching the conductive metal to expose wide band gap emission areas. The emission areas are well suited for large area flat panel displays.
Abstract:
Ionized metal cluster beam deposition of metal bumps on substrates such as multi-chip modules and integrated circuit chips is enhanced. The present invention discloses wet etching techniques for removing unwanted metal deposited on the substrate around bumps, multiple sources for depositing alloyed (tin-lead) bumps with constant composition, and single or multiple sources for directing a cluster beam through an aperture to deposit metal on a substrate and directing an ion beam at the aperture to remove metal deposited therein.
Abstract:
Method of making a field emitter device with submicron low work function emission tips without using photolithography. The method includes depositing in situ by evaporating or sputtering a discontinuous etch mask comprising randomly located discrete nuclei. In one embodiment an ion etch is applied to a low work function material covered by a discontinuous mask to form valleys in the low work function material with pyramid shaped emission tips therebetween. In another embodiment an ion etch is applied to an electrically conductive base material covered by a discontinuous mask to form valleys in the base material with pyramid shaped base tips therebetween. The base material is then coated with a low work function material to form emission tips thereon.
Abstract:
Depositing a diamond film on an electron emitting tip including disposing hydrocarbon and etchant reactant gasses together with the tip in a reaction vessel and providing an external voltage source such that electrons, emitted from the electron emitter, disassociate hydrocarbon constituents of the reactant gas. The constituents accelerate toward and are deposited onto the tip and are selectively etched by the etchant constituents such that only the diamond form of the deposited carbon remains.
Abstract:
Provided is a field emission display (FED) in which field emission devices are applied to a flat panel display. The FED includes: a cathode plate including a substrate, first and second thin film transistors (TFTs) that are serially connected on the substrate, a field emitter disposed on a drain electrode of the second TFT, a gate insulating layer having a gate hole surrounding the field emitter, and field emission gate electrodes disposed on the gate insulating layer; and an anode plate including a substrate, and red, green, and blue phosphors disposed on the substrate, wherein the cathode plate and the anode plate are vacuum-packaged parallel and opposite to each other. According to the present invention, uniformity of the FED panel can be significantly improved, and an inherent source-drain leakage current of the TFT can be significantly reduced, so that a contrast ratio of the FED can be significantly enhanced.
Abstract:
An electrically conducting n-type ultrananocrystalline diamond (UNCD) having no less than 10 atoms/cm of nitrogen is disclosed. A method of making the n-doped UNCD. A method for predictably controlling the conductivity is also disclosed.
Abstract translation:公开了具有不小于10 19原子/ cm 3的氮的导电n型超微晶金刚石(UNCD)。 制造n掺杂UNCD的方法。 还公开了可预测地控制电导率的方法。
Abstract:
The present invention relates to a field electron emitter consisting of diamond and graphite-like carbon. According to the present invention said emitter has within its volume a uniform composition of diamond particles bonded by graphite-like carbon. The present invention also relates to a method of manufacturing such a field electron emitter by heat treating an intermediate body in gaseous hydrocarbon.