Abstract:
A counter that can include a plurality of count stages is disclosed. Each count stage includes a ferroelectric capacitor characterized by first and second polarization states, a variable impedance element, reset and count ports and a detector. The variable impedance element has an impedance between first and second switch terminals that is determined by a signal on a control terminal, the ferroelectric capacitor being connected between the control terminal and the first switch terminal. A reset signal coupled to the control terminal causes the ferroelectric capacitor to be polarized in the first polarization state. The count port is configured to receive pulses to be counted, the count port being connected to the first switch terminal by a conductive load. The detector generates a count complete signal if a potential on the first terminal exceeds a threshold value while the count port is receiving one of the pulses.
Abstract:
A memory cell comprising a ferroelectric capacitor, a variable impedance element and a conductive load is disclosed. The ferroelectric capacitor, characterized by first and second polarization states, is connected between a control terminal and a first switch terminal. The variable impedance element has an impedance between the first and second switch terminals that is determined by a signal on a control terminal. The conductive load is connected between a first power terminal and the first switch terminal. The second switch terminal is connected to a second power terminal. When a potential difference is applied between the first and second power terminals, a potential on the first switch terminal varies in a manner determined by the state of polarization of the ferroelectric capacitor.
Abstract:
A memory cell and memories constructed from that memory cell are disclosed. A memory according to the present invention includes a ferroelectric capacitor, a charge source and a read circuit. The charge source receives a data value to be stored in the ferroelectric capacitor. The charge source converts the data value to a remanent charge to be stored in the ferroelectric capacitor and causes that remanent charge to be stored in the ferroelectric capacitor. The read circuit determines a charge stored in the ferroelectric capacitor. The data value has more than three distinct possible states, and the determined charge has more than three determined values. The memory also includes a reset circuit that causes the ferroelectric capacitor to enter a predetermined known reference state of polarization.
Abstract:
A memory cell comprising a ferroelectric capacitor, a variable impedance element and a conductive load is disclosed. The ferroelectric capacitor, characterized by first and second polarization states, is connected between a control terminal and a first switch terminal. The variable impedance element has an impedance between the first and second switch terminals that is determined by a signal on a control terminal. The conductive load is connected between a first power terminal and the first switch terminal. The second switch terminal is connected to a second power terminal. When a potential difference is applied between the first and second power terminals, a potential on the first switch terminal varies in a manner determined by the state of polarization of the ferroelectric capacitor.
Abstract:
A memory cell comprising a ferroelectric capacitor, a variable impedance element and a conductive load is disclosed. The ferroelectric capacitor, characterized by first and second polarization states, is connected between a control terminal and a first switch terminal. The variable impedance element has an impedance between the first and second switch terminals that is determined by a signal on a control terminal. The conductive load is connected between a first power terminal and the first switch terminal. The second switch terminal is connected to a second power terminal. When a potential difference is applied between the first and second power terminals, a potential on the first switch terminal varies in a manner determined by the state of polarization of the ferroelectric capacitor.
Abstract:
A location based service method and location based service system is provided. The location based service method includes: making requests for position determination of a client terminal according to a first position determination method and a second position determination method, in response to a location based service request; receiving a position determination result according to the first position determination method, and generating first location data including additional information which corresponds to the position determination result according to the first position determination method; providing the client terminal with the first location data; receiving a position determination result according to the second position determination method, and generating second location data, the second location data being refined first location data; and providing the client terminal with the second location data.
Abstract:
An improved method for constructing integrated circuit structures in which a buffer SiO2 layer (203) is used to separate various components comprising ferroelectric materials (208) or platinum (202) is disclosed. The invention prevents interactions between the SiO2 buffer layer (203) and the ferroelectric materials (208). The invention also prevents the cracking in the SiO2 which is commonly observed when the SiO2 layer (203) is deposited directly over a platinum region (202) on the surface of the circuit. The present invention utilizes a buffer layer of material which is substantially inert with respect to the ferroelectric material (208) and which is also an electrical insulator to separate the SiO2 layer (203) from the ferroelectric material (208) and/or the platinum regions (202).
Abstract:
An improved ferroelectric FET structure (10) in which the ferroelectric layer (14) is doped to reduce retention loss. A ferroelectric FET according to the present invention includes a semiconductor layer (16) having first and second contacts (18, 19) thereon, the first and second contacts being separated from one another. The ferroelectric FET also includes a bottom electrode (12) and a ferroelectric layer (14) which is sandwiched between the semiconductor layer (16) and the bottom electrode (12). The ferroelectric layer (14) is constructed from a perovskite structure of the chemical composition ABO3 wherein the B site comprises first and second elements and a dopant element that has an oxidation state greater than +4 in sufficient concentration to impede shifts in the resistance measured between the first and second contacts with time. The ferroelectric FET structure preferably comprises Pb in the A-site. The first and second elements are preferably Zr and Ti, respectively. The preferred B-site dopants are Niobium, Tantalum, and Tungsten at concentration between 1 % and 8 %.
Abstract:
An improved method for constructing integrated circuit structures in which a buffer SiO2 layer (203) is used to separate various components comprising ferroelectric materials (208) or platinum (202) is disclosed. The invention prevents interactions between the SiO2 buffer layer (203) and the ferroelectric materials (208). The invention also prevents the cracking in the SiO2 which is commonly observed when the SiO2 layer (203) is deposited directly over a platinum region (202) on the surface of the circuit. The present invention utilizes a buffer layer of material which is substantially inert with respect to the ferroelectric material (208) and which is also an electrical insulator to separate the SiO2 layer (203) from the ferroelectric material (208) and/or the platinum regions (202).