Abstract:
A novel method of packaging electronic devices (e.g. any device that receives or transmits electronic signals) including microelectromechanical devices, semiconductor devices, light emitting devices, light modulating devices, and light detecting device has been provided herein. The electronic device is placed between two substrates, at least one of which has a cavity for holding the electronic device. The two substrates are then bonded and hermetically sealed with a sealing medium. The adhesion of the sealing medium to the substrates, especially when one of the two substrates is ceramic, can be improved by applying a metallization layer to the surface of the substrate.
Abstract:
A microelectromechanical device package with integral a heater (220) and a method for packaging the micro-electromechanical device are disclosed in this invention. The microelectromechanical device package comprises a first package substrate (210) and second substrate (215), between which a microelectromechanical device, such as a micromirror array device is (105) located. In order to bonding the first and second package substrates so as to package the microelectromechanical device inside, a sealing medium layer (230) is deposited, and heated by the heater (220) so as to bond the first and second package substrates together.
Abstract:
A spatial light modulator (200) is disclosed, along with methods for making such a modulator, that comprises an array of micromirrors (201) each having a hinge (240) and a micromirror plate (210) held via the hinge on a substrate (202), the micromirror plate being disposed in a plane separate from the hinge and having a diagonal (211) extending across the micromirror plate, the micromirror plate being attached to the hinge such that the micromirror plate can rotate along a rotation axis (214) that is parallel to, but off-set from the diagonal of the micromirror plate. Also disclosed is a projection system that comprises such a spatial light modulator, as well as a light source, condensing optics, wherein light from the light source is focused onto the array of micromirrors, projection optics for projecting light selectively reflected from the array of micromirrors onto a target, and a controller for selectively actuating the micromirrors in the array.
Abstract:
A voltage storage cell circuit includes an access transistor and a storage capacitor, wherein the source of said access transistor is connected to a bitline, the gate of said access transistor is connected to a wordline, and wherein the drain of said access transistor is connected to a first plate of said storage capacitor forming a storage node, and wherein the second plate of said storage capacitor is connected to a pump signal. This arrangement allows for a novel pixel circuit design with area requirements comparable to that of a 1T1C DRAM-like pixel cell, but with the advantage of an output voltage swing of the full range allowed by the breakdown voltage of the pass transistor. A spatial light modulator such as a micromirror array can comprise such a voltage storage cell.
Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a substrate (10); providing a sacrificial layer (20) directly or indirectly on the substrate; providing one or more micromechanical structural layers (30) on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer (20), the first etch comprising providing an etchant gas and energizing (42) the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material.
Abstract:
An etching method, such as for forming a micromechanical device, is disclosed. One embodiment of the method is for releasing a micromechanical structure, comprising, providing a sacrificial layer directly or indirectly on the substrate; providing one or more micromechanical structural layers on the sacrificial layer; performing a first etch to remove a portion of the sacrificial layer, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of the sacrificial layer; performing a second etch to remove additional sacrificial material in the sacrificial layer, the second etch comprising providing a gas that chemically but not physically etches the additional sacrificial material. Another embodiment of the method is for etching a silicon material on or within a substrate, comprising: performing a first etch to remove a portion of the silicon, the first etch comprising providing an etchant gas and energizing the etchant gas so as to allow the etchant gas to physically, or chemically and physically, remove the portion of silicon; performing a second etch to remove additional silicon, the second etch comprising providing an etchant gas that chemically but not physically etches the additional silicon.
Abstract:
A method is disclosed for forming a micromechanical device. The method includes fully or partially forming one or more micromechanical structures multiple times on first substrate (5a). A second substrate is bonded onto the first substrate so a to cover the multiple areas each having one or more micromechanical structures, so as to form a substrate assembly. The substrate assembly is then separated into individual dies, each die having the one or more micromechanical structures held on a portion (21) of the first substrate, with a portion of the second substrate bonded to the first substrate portion. Finally, the second substrate portion is removed from each die (3a-3d) to expose the one or more micromechanical structures on the first substrate portion. The invention is also directed to a method for forming a micromechanical device, including: forming one or more micromechanical structures in one or more areas on a first substrate; bonding caps onto the first substrate so as to cover the one or more areas each having one or more micromechanical structures, so as to form a substrate (10) assembly; after a period of time, removing the caps to expose the one or more micromechanical structures. During the period of time between bonding the caps and later removing the caps, the substrate assembly can be singulated, inspected, irradiated, annealed, die attached, shipped and/or stored.
Abstract:
The present invention provides a microstructure device comprising multiple substrates with the components of the device formed on t substrates (116), In order to maintain uniformity of the gap between the substrates, a plurality of pillars (130A, 130B, 134A, 134B) is provided and distributed in the gap so as to prevent decrease of the gap size The increase of the gap size can be prevented by bondin the pillars to the components of the microstructure Alternatively, the increase of the gap size can be prevented by maintaining the pressure inside the gap below the pressure under which the microstructure will be in operation Electrical contact of the substrates on which the micromirrors and electrodes are formed can be made through many ways, such as electrical contact areas electrical contact pads and electrical contact springs
Abstract:
The present invention provides an illumination system having a light source (124) for emitting light and a reflector (122) having a reflective surface () for collecting and reflecting the light from the light source.
Abstract:
Data processing methods and apparatus used in digital display system transpose pixel-by-pixel data into bitplane-by-bitplane data. The methods and apparatus are especially useful for dynamically transposing high-speed flowing-through pixel data in a "real-time" fashion. In a transpose process, a stream of pixel data is received by a plurality of input lines of the transpose apparatus. The received pixel data are delayed by a set of delay units and then permutated by one or more switches according to a predefined delay scheme and permutation rule. After permutation, the stream of data is delayed so as to finalize the transpose process.