Abstract:
A method includes forming a trench extending from a first surface of a semiconductor body into the semiconductor body such that a first trench section and at least one second trench section adjoin the first trench section, wherein the first trench section is wider than the second trench section. A first electrode is formed, in the at least one second trench section, and dielectrically insulated from semiconductor regions of the semiconductor body by a first dielectric layer. An inter-electrode dielectric layer is formed, in the at least one second trench section, on the first electrode. A second electrode is formed, in the at least one second trench section on the inter-electrode dielectric layer, and in the first trench section, such that the second electrode at least in the first trench section is dielectrically insulated from the semiconductor body by a second dielectric layer.
Abstract:
A method for forming a semiconductor device includes carrying out an anodic oxidation of a surface region of a semiconductor substrate to form an oxide layer at a surface of the semiconductor substrate by generating an attracting electrical field between the semiconductor substrate and an external electrode within an electrolyte to attract oxidizing ions of the electrolyte, causing an oxidation of the surface region of the semiconductor substrate. Further, the method includes reducing the number of remaining oxidizing ions within the oxide layer, while the semiconductor substrate is within an electrolyte.
Abstract:
A semiconductor device in a semiconductor substrate includes a trench in a first main surface of the semiconductor substrate. The trench includes a first trench portion extending in a first direction and a second trench portion extending in the first direction. The first trench portion is connected with the second trench portion in a lateral direction. The first trench portion and the second trench portion are arranged one after the other along the first direction. The semiconductor device further includes a trench conductive structure having a conductive material disposed in the first trench portion, and a trench capacitor structure having a capacitor dielectric and a first capacitor electrode disposed in the second trench portion. The first capacitor electrode includes a layer lining a sidewall of the second trench portion.
Abstract:
A method of producing a controllable semiconductor component includes providing a semiconductor body with a top side and a bottom side, and forming a first trench protruding from the top side into the semiconductor body and a second trench protruding from the top side into the semiconductor body. The first trench has a first width and a first depth, and the second trench has a second width greater than the first width and a second depth greater than the first depth. The method further includes forming, in a common process, an oxide layer in the first trench and in the second trench such that the oxide layer fills the first trench and electrically insulates a surface of the second trench, and removing the oxide layer from the first trench completely or at least partly such that the semiconductor body comprises an exposed first surface area arranged in the first trench.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.
Abstract:
Methods for producing a semiconductor component that includes a transistor having a cell structure with a number of transistor cells monolithically integrated in a semiconductor body and electrically connected in parallel. In an example method, first trenches extending from the top side into the semiconductor body are produced, as are second trenches that each extend from the top side deeper into the semiconductor body than each of the first trenches. A first dielectric abutting on a first portion of the semiconductor body is produced at a surface of each of the first trenches. Also produced is a second dielectric at a surface of each of the second trenches. In each of the first trenches, a gate electrode is produced, after which a second portion of the semiconductor body is electrically insulated from the first portion of the semiconductor body by removing a bottom layer of the semiconductor body.
Abstract:
In various embodiments, a device is provided. The device includes a substrate having a first side and a second side opposite the first side. The substrate includes a plurality of driver circuits at the first side of the substrate. Each of the plurality of driver circuits is configured to drive a current from the first side of the substrate to the second side of the substrate. The device further includes at least one load interface at the second side of the substrate. The at least one load interface is configured to couple the current from the plurality of the driver circuits to a plurality of loads at the second side of the substrate.
Abstract:
A method for forming a semiconductor device includes carrying out an anodic oxidation of a surface region of a semiconductor substrate to form an oxide layer at a surface of the semiconductor substrate by generating an attracting electrical field between the semiconductor substrate and an external electrode within an electrolyte to attract oxidizing ions of the electrolyte, causing an oxidation of the surface region of the semiconductor substrate. Further, the method includes reducing the number of remaining oxidizing ions within the oxide layer, while the semiconductor substrate is within an electrolyte.
Abstract:
A semiconductor device includes a transistor in a semiconductor substrate having a first main surface. The transistor includes a source region, a drain region, a channel region, a drift zone, and a gate electrode adjacent to at least two sides of the channel region. The channel region and the drift zone are disposed along a first direction parallel to the first main surface, between the source region and the drain region. The semiconductor device further includes a conductive layer beneath the gate electrode and insulated from the gate electrode.
Abstract:
A semiconductor component includes an auxiliary semiconductor device configured to emit radiation. The semiconductor component further includes a semiconductor device. An electrical coupling and an optical coupling between the auxiliary semiconductor device and the semiconductor device are configured to trigger emission of radiation by the auxiliary semiconductor device and to trigger avalanche breakdown in the semiconductor device by absorption of the radiation in the semiconductor device. The semiconductor device includes a pn junction between a first layer of a first conductivity type buried below a surface of a semiconductor body and a doped semiconductor region of a second conductivity type disposed between the surface and the first layer.