Abstract:
A driver circuit for driving a laser diode is described herein. In accordance with a first exemplary embodiment the driver circuit includes a first electronic switch connected to an output node that is configured to be operably connected to a laser diode. The electric connection between the first electronic switch and the output node has a first inductance. The driver circuit further includes a bypass circuit that is coupled to the output node and configured to take over, when activated, the current supplied to the output node via the first electronic switch, thus magnetizing the first inductance.
Abstract:
In various embodiments, a device is provided. The device includes a substrate having a first side and a second side opposite the first side. The substrate includes a plurality of driver circuits at the first side of the substrate. Each of the plurality of driver circuits is configured to drive a current from the first side of the substrate to the second side of the substrate. The device further includes at least one load interface at the second side of the substrate. The at least one load interface is configured to couple the current from the plurality of the driver circuits to a plurality of loads at the second side of the substrate.
Abstract:
A circuit arrangement includes a number of light emitting diodes emitting light of different colors arranged adjacent to each other for additive color mixing to provide a desired color. A temperature sensing circuit is configured to provide a temperature signal representing temperature(s) of the light emitting diodes. Current sources are configured to provide the light emitting diodes with respective load currents in accordance with corresponding control signals received by the current sources. First and second modulator units are configured to generate the control signals which are modulated such that a time average value of each control signal corresponds to the value of a corresponding input signal of the respective sigma-delta modulator. A calibration circuit is configured to provide the input signals dependent on a color signal defining the desired color and dependent on the temperature signal.
Abstract:
A laser diode module is described herein. In accordance with a first exemplary embodiment, the laser diode module includes a first semiconductor die including at least one electronic switch, and a second semiconductor die including at least one laser diode. The second semiconductor die is bonded on the first semiconductor die using a chip-on-chip connecting technology to provide electrical connection between the electronic switch and the laser diode.
Abstract:
In one example, a circuit includes a switching unit including a first node, a second node, a control node, and a body. The switching unit is configured to selectively couple the first node of the switching unit to the second node of the switching unit in response to receiving a control signal at a control input of the switching unit. The circuit further includes a reverse current protection unit configured to reduce a current flow from the second node of the switching unit to the first node of the switching unit. The reverse current protection unit selectively couples the first node of the switching unit and the body of the switching unit and selectively couples the second node of the switching unit to the body of the switching unit.
Abstract:
In various embodiments, a device is provided. The device includes a substrate having a first side and a second side opposite the first side. The substrate includes a plurality of driver circuits at the first side of the substrate. Each of the plurality of driver circuits is configured to drive a current from the first side of the substrate to the second side of the substrate. The device further includes at least one load interface at the second side of the substrate. The at least one load interface is configured to couple the current from the plurality of the driver circuits to a plurality of loads at the second side of the substrate.
Abstract:
According to one exemplary embodiment, a light-emitting diode driver is provided, having: a differential first interface, a single-ended second interface, wherein the light-emitting diode driver is configured to use the first interface to communicate according to a bidirectional differential bus communication protocol as a slave, to use the second interface to communicate according to a single-ended bus protocol and to transpose signals between the first interface and the second interface, and to supply one or more light-emitting diodes with electric power on the basis of signals received via the first interface.
Abstract:
In one example, a circuit includes a switching unit including a first node, a second node, a control node, and a body. The switching unit is configured to selectively couple the first node of the switching unit to the second node of the switching unit in response to receiving a control signal at a control input of the switching unit. The circuit further includes a reverse current protection unit configured to reduce a current flow from the second node of the switching unit to the first node of the switching unit. The reverse current protection unit selectively couples the first node of the switching unit and the body of the switching unit and selectively couples the second node of the switching unit to the body of the switching unit.
Abstract:
A laser diode module is described herein. In accordance with a first exemplary embodiment, the laser diode module includes a first semiconductor die including at least one electronic switch, and a second semiconductor die including at least one laser diode. The second semiconductor die is bonded on the first semiconductor die using a chip-on-chip connecting technology to provide electrical connection between the electronic switch and the laser diode.
Abstract:
In one example, a method includes generating, by a current source of a device, a first portion of a power signal that drives one or more load elements. In this example, a second portion of the power signal is generated by one or more components that are external to the device and are in parallel to the current source such that the second portion of the power signal does not flow through the current source.