Abstract:
Salts of hydroxy acids include functional groups capable of forming "hybrid" ionic bonds with fibers or particles and another functional group capable of forming a hydrogen bond or "hybrid" ionic bond with the fibers when the binder forms a "hybrid" ionic bond with the particles or a hydrogen, coordinate covalent, or "hybrid" ionic bond with the particles when the binder forms a "hybrid" ionic bond with the fibers. Amino acids are also described as binders capable of forming "hybrid" ionic or ionic bonds between fibers and particles. Salts of bases, such as choline chloride are also described as being useful binders for attaching particles to fibers. The salts of bases form ionic bonds with either the particles or the fibers. Such binding systems provide viable alternatives to existing binding systems.
Abstract:
A web of fibers is bound together by a bonding medium that has been activated by partially solubilizing the bonding medium with a solvent therefor. The fibers are insoluble in the bonding medium. As the bonding medium is partially solubilized, it becomes tacky and flows into contact with the fibers and with itself. Thereafter, the solvent is absorbed by the bonding medium, allowing the bonding medium to resolidify and bond the fibers in a matrix, increasing the web strength.
Abstract:
Wood veneers having enhanced strength and/or stiffness, wood products made therefrom, and methods for manufacturing such veneers and wood products are disclosed. A treated veneer having enhanced strength and stiffness has a population of compacted wood cells extending across at least a portion of the length and width dimensions and into the thickness dimension of the veneer to confer an increased density level, and thus increased strength and/or stiffness levels, to the veneer. Interspersed in the compacted wood cells is a non-saturating loading level of a cured rigid thermoset material which maintains compaction of the compacted cells even after prolonged soaking in water. The preferred loading level is just what is required to maintain compaction of the cells. The preffered thermoset material is polyurea which is formed from a polyisocyanate resin appplied to at least one major surface of the veneer followed by hot-pressing the veneer. The strength and/or stiffness increase, compared to untreated veneer, is about 10 to 150 percent. Treated veneers can be made into various multiple-ply wood products such as laminated veneer lumber and plywood, thereby providing a way to convert relatively weak lumber from fast-grown trees into premium-grade construction material.
Abstract:
A densifying agent is applied to fibers in order to improve the densification properties of the fibers. The fibers have hydrogen bonding functional groups. The densifying agent are denser than the fibers to which the densifying agent is applied. The densifying agent can be organic or inorganic. The improved densification properties are observed without the presence of particles bound to the fibers or in the presence of particles that are not bound to the fibers. Softening agents can also be applied to the fibers in order to soften the fibers and articles including such fibers. Softening agents may be selected from the group of densifying agents.
Abstract:
An applicator (58) directs a flow of a liquid (78) toward a substrate (60) and forms droplets that deposit uniformly on the substrate (60). The applicator (58) includes a liquid outlet that directs an elongated distribution of liquid toward the substrate (60), while an impingement fluid is propelled through an adjacent fluid impingement slot against the liquid (78). The impingement fluid changes the confluent liquid flow into fine droplets that deposit uniformly on the substrate (60). This applicator is capable of coating substrates (60) very uniformly, and producing coatings that are less streaky and grainy than spray nozzle applicators. The applicator (58) is capable of depositing liquid coatings over a wide range of application rates and depositing coatings on a wide range of substrates (60).
Abstract:
The invention is a method for reproducing conniferous trees by somatic embryogenesis using plant tissue culture techniques in a multistage culturing process. A suitable explant, typically the fertilized embryo excised from an immature seed, is first cultured on a medium that induces multiple early stage proembryos. These are multiplied in a second culture having reduced growth hormones. The early stage embryos may then be placed in or on a late stage proembryo development culture in order to develop very robust late stage proembryos having at least 100 cells. Culturing from this point continues in a cotyledonary embryo development medium containing an active gibberellin (GA) in an amount up to about 50 mg/L. Preferably exogenous abscisic acid (ABA) is also present in a similar amount. Concentration of GA and ABA may be reduced over time by inclusion of an adsorbent such as activated charcoal or by stepwise subcultures in which the later cultures have reduced hormone concentrations. After several weeks somatic embryos having the appearance of zygotic embryos will have formed. These may be germinated before or after storage and transplanted to soil for further growth. In addition to its use in the cotyledonary embryo development stage, GA may also be advantageously included in any of the maintenance cultures following embryo initiation. The use of GA results in larger and more robust somatic embryos and ultimately in greater germination success.
Abstract:
A laminated product has an organic polymer layer on at least one surface of a substrate of cellulosic material impregnated with polyisocyanate. The substrate is preferably made from substantially delignified cellulosic material and an isocyanate resin. The isocyanate resin comprises a polyisocyanate, preferably PMDI, and may include a miscible organic solvent, preferably one such as propylene carbonate having a high boiling point and low flammability and toxicity. The substrate may be cured with an uncured overlay sheet positioned on the cured substrate and then cured to bond the substrate and overlay. Alternatively, a cured overlay may be adhesively or otherwise secured to a previously cured substrate. As yet another alternative, an uncured overlay sheet and uncured substrate may be placed in position and simultaneously cured. An overlay may be positioned on one or both major surfaces of a substrate sheet.
Abstract:
An apparatus is disclosed for preparing a quantity of individual treated fibers from one or more fiber mats. The apparatus comprises a fiber treatment zone, and a conveyor for conveying each mat through the fiber treatment zone. In the treatment zone each mat is impregnated by an applicator with a treatment material, such as a crosslinking substance, and conveyed directly to an attrition device. The attrition device fiberizes the mats to form a fiber output having a low nit level, such as no more than about three, and a dryer both dries the fiber output and cures the crosslinking substance. The fiberizer is configured to minimize the accumulation of fiber at locations therein. Fiber is transported from the attrition device to the dryer at a high velocity under reduced pressure to promote drying. A heated retention bin is provided after drying to increase curing time in the system. A thermobonding agent may be added to the dried and cured fibers to enhance the wet strength of webs made from the fiber.
Abstract:
A system for coating discontinuous fibers with a liquid coating material uses a hopper/blender (20) which entrains the fiber particles in a toroidal mass of moving fibers. The hopper/blender has an inverted conical section with an agitator assembly (50') rotated therein. The agitator assembly has a base disc with tubular blades projecting outwardly therefrom into the conical section. Aft swept lifter blades relative to the direction of rotation are mounted to the agitator disc. A method of applying a liquid coating material to discontinuous fibers is also disclosed.
Abstract:
The present invention provides the nucleotide sequences of Acetobacter operons, cdg operons encoding genes for the biosynthesis and degradation of cyclic diguanosine monophosphate (c-di-GMP). Specifically, the nucleotide sequences and deduced amino acid sequences of 3 phosphodiesterases isozymes, 3 diguanylate cyclase isozymes, and 2 polypeptides of unidentified function are provided. Also provided for are various strains of microorganisms, including Acetobacter cells genetically manipulated so as to produce elevated and/or reduced levels of one or more cdg operon encoded proteins.