Abstract:
In a group-management control apparatus for an elevator system with plural elevators capable of serving plural floors, hall calls are allotted to adaptive elevators in accordance with a predetermined hall call allotment algorithm, for the purpose of achieving desired control targets. Plural kinds of the hall call allotment algorithm with different schemes are provided in advance, and the predetermined hall call allotment algorithm is selected therefrom by a reasoning operation, which is executed in accordance with a reasoning rule selected from among a plurality of reasoning rules empirically provided in advance on the basis of the desired control targets and an operating state of the elevators.
Abstract:
An elevator system employing a micro-processor-based group controller (FIG. 2) communicating with the cars (3, 4) to assign cars to hall calls based on a Relative System Response (RSR) approach. However, rather than using unvarying bonuses and penalties, the assigned bonuses and penalties are varied using "artificial intellience" techniques based on combined historic and real time traffic predictions to predict the number of people behind a hall call, and, calculating and using the average boarding and de-boarding rates at "en route" stops, and the expected car load at the hall call floor. Prediction of the number of people waiting behind hall calls for a few minute intervals are made using traffic levels measured during the past few time intervals on that day as real time predictors, using a linear exponential smoothing model, and traffic levels measured during similar time intervals on previous similar days as historic traffic predictors, using a single exponential smoothing model. The remaining capacity in the car at the hall call floor is matched to the waiting queue using a hall call mismatch penalty. The car stop and hall stop penalties are varied based on the number of people behind the hall call and the variable dwell times at "en route" stops. The stopping of a heavily loaded car to pick up a few people is penalized using a car load penalty. These enhancements to RSR result in equitable distribution of car stops and car loads, thus improving handling capacity and reducing waiting and service times.
Abstract:
An elevator control system employing a micro-processor-based group controller (FIG. 2), which communicates with the cars (3, 4) of the system to determine the conditions of the cars, and responds to hall calls registered at a plurality of landings in the building serviced by the cars under control of the group controller, assigning hall calls to cars based on the summation for each car, relative to each call, a weighted summation of a plurality of system response factors, some indicative, and some not, of conditions of the car irrespective of the call being assigned, assigning varying "bonuses" and "penalties" to them in the weighted summation. "Artificial intelligence" techniques are used to predict traffic levels and any crowd build up at various floors to better assign one or more cars to the "crowd" predicted floors, either parking them there, if they were empty, or more appropriately assigning car(s) to the hall calls. Traffic levels at various floors are predicted by collecting passengers and car stop counts in real time and using real time and historic prediction for the traffic levels, with single exponential smoothing and/or linear exponential smoothing. Predicted passenger arrival counts are used to predict any crowd at fifteen second intervals at floors where significant traffic is predicted. Crowd prediction is then adjusted for any hall call stops made and the number of passengers picked up by the cars. The crowd dynamics are matched to car assignment, with one or more cars being sent to crowded floor(s).
Abstract:
An elevator system for a building having a plurality of floors, including supervisory system control for controlling a plurality of elevator cars to answer calls for elevator service from the plurality of floors. The system control assigns unassigned service directions from the plurality of floors to each of the elevator cars, until meeting a predetermined dynamic limiting average. The assignments are made to one car at a time, proceeding to the next when a predetermined limiting average is met. The order in which the cars are selected for assignment is a dynamic order, responsive to the relative work loads of the cars. The assignments are made to each car, starting in a predetermined direction from each car's position, and are terminated a predetermined travel distance from the car, if not terminated sooner due to a limiting dynamic average. A predetermined minimum limiting dynamic average may be set, to control the rate at which idle cars become busy cars when traffic increases.
Abstract:
PROBLEM TO BE SOLVED: To efficiently perform distributed waiting by suppressing useless power consumption as much as possible.SOLUTION: A group management control apparatus 3 includes: an object data storage unit 9; an operation curve creation unit 10; a power consumption calculation unit 8; a distributed waiting controller 6; and distribution instruction controller 7. The power consumption calculation unit 8 calculates power consumption when each car is run according to an operation curve on the basis of object data stored in an object data storage unit 9 and the operation curve created by the operation curve creation unit 10. The distributed waiting controller 6 sets a car in a waiting state among the cars as a distributed waiting target car, and outputs a distributed waiting instruction to move the target car to a distributed waiting floor. The distribution instruction controller 7 obtains, from the power consumption calculation unit 8, power consumption when the distributed target car is moved to the distributed waiting floor, and on the basis of the power consumption, permits or inhibits a distributed waiting instruction output from the distribution instruction controller 7.
Abstract:
According to an example embodiment, an apparatus for scheduling elevator transport in an elevator system comprising one or more elevators is provided. The apparatus may be configured to: obtain, for a plurality of passengers, a respective transport request for elevator transport using said one or more elevators, the transport request comprising at least respective indications of an origin floor, a destination floor and a requested transport time window; derive, in dependence of said plurality of transport requests, a transport schedule that includes a respective transport allocation for each of said plurality of passengers, wherein a transport allocation for a passenger is derived in accordance with the requested transport time window indicated for the respective passenger, in view of transport allocations derived for other passengers and in view of a transport capacity of said one or more elevators and wherein the transport allocation for a passenger comprises at least a scheduled transport time for the respective passenger; and operate said one or more elevators in accordance with the derived transport schedule.
Abstract:
A method and system for controlling elevator dispatch is provided. User data, including user behavior, is collected from a number of users over a specified time period. Elevator use data for a number of elevators in a building is also collected over the specified time period. Applying the user data and elevator use data, an elevator dispatch model is constructed that predicts future elevator use according to predicted user needs. An elevator control system dispatches the elevators according to the dispatch model. The elevator dispatch model is refined according to feedback data collected from users over a subsequent time period.