Abstract:
The present invention provides a method and apparatus for sterilizing articles using an ozone-containing gas, where condensation of water from the sterilization atmosphere during the sterilization process is substantially prevented. The inventive sterilization method includes providing a sterilization chamber and placing an article into the sterilization chamber. The sterilization chamber is sealed prior to equalizing the temperature of the article and the atmosphere in the sterilization chamber. A vacuum is applied to achieve a preselected vacuum pressure in the sterilization chamber. Once the vacuum pressure is set, water vapour is supplied to the sterilization chamber. Ozone-containing gas is then supplied to the sterilization chamber and the sterilization chamber remains sealed for a preselected treatment period, where the sterilization chamber remains sealed throughout the whole process. Finally, vacuum in the sterilization chamber is released.
Abstract:
Provided is an ozone generator (47) including two sheets of ozone generating electrodes (156, 157). These two ozone generating electrodes (156, 157) are arranged in a treating passage (152) in series along an air flowing direction. Thus, the air to come in from an air inlet port flows at first along the ozone generating electrode (156) of the first sheet, and receives, while flowing, the creeping discharge of the first ozone generating electrode (156) thereby to generate the ozone. The air thus having generated the ozone further flows in the treating passage (152) to the ozone generating electrode (157) of the second sheet, and receives, while flowing, the creeping discharge of the second ozone generating electrode (157) thereby to generate the additional ozone. The highly dense ozone can be used to clean the washing water.
Abstract:
A method of sterilizing a closed environment is provided in which an disinfection apparatus is placed into the closed environment; it then generates ozone to a predetermined ozone concentration, following which the humidity of the closed environment is rapidly increased. A catalytic converter then reduces the ozone concentration to safe levels. When the ozone concentration is reduced to a predetermined safe level, the disinfection apparatus signals.
Abstract:
An ozone exhaust system in an image forming apparatus having a multiple number of process printing units, includes: exhaust ducts for exhausting ozone arising in the process printing units. In the ozone exhaust system, the exhaust ducts are mainly constituted of process printing unit's side exhaust ducts provided respectively along multiple charger cases and a main exhaust duct to which the process printing unit's side exhaust ducts are connected, and the process printing unit's side exhaust ducts are constructed so that the air current that flows into the charger cases and the air current that flows from the process printing unit's side exhaust ducts into the main exhaust duct are directed in the same direction.
Abstract:
A process and reactor for chemical conversion is taught. The process allows the selective breaking of chemical bonds in a molecule by use of fast rise alternating current or fast rise pulsed direct current, each fast rise portion being selected to have a suitable voltage and frequency to break a selected chemical bond in a molecule. The reactor for carrying out such a process includes a chamber for containing the molecule and a generator for generating and applying the selected fast rise current.
Abstract:
A dielectric assembly for generating ozone includes a positive electrode, a negative electrode in operational proximity to the positive electrode, a dielectric in operational proximity to the positive and negative electrodes for generating the ozone, and a knob adapted to extend outside of a housing into which the dielectric assembly is to be placed. A system is also provided for sanitizing and deodorizing water, food, surfaces and air including a microbiological reduction filter device having an input connected to a water supply, a venturi injector disposed within a housing and connected to an output of the microbiological reduction filter device which generates ozone and mixes the generated ozone with the water, and an electrode assembly comprising a plurality of electrodes, a dielectric for generating the ozone, and a knob extending outside of the housing. The dielectric in a first embodiment and the entire dielectric assembly in a second embodiment can be removed from the housing and replaced in its entirety by the knob.
Abstract:
A personal electro-kinetic electro-static air conditioner includes a self-contained ion generator that provides electro-kinetically moved air with ions and safe amounts of ozone, and includes a water retaining element to increase humidity of the output air flow. The ion generator includes a high voltage pulse generator whose output pulses are coupled between first and second electrode arrays. Preferably the first electrode array includes first and second pointed electrodes, and the second electrode array includes annular-like electrodes having a central opening coaxial with the associated pointed electrode. The surface of the annular-like electrodes is smooth and continuous through the opening and into a collar region through which the air flows. A water retaining member is disposed surrounding the output airflow to increase humidity of the output air, which is substantially cleansed of particulate matter, and contains safe amounts of ozone.
Abstract:
An electro-kinetic air conditioner for removing particulates from the air creates an airflow using no moving parts. The conditioner includes an ion generator that has an electrode assembly including a first array of emitter electrodes, a second array of collector electrodes, and a high voltage generator. Preferably, a third or leading or focus electrode is located upstream of the first array of emitter electrodes, and/or a trailing electrode is located downstream of the second array of collector electrodes. The device can also include an interstitial electrode located between collector electrodes, an enhanced collector electrode with an integrally formed trailing end, and an enhanced emitter electrode with an enhanced length in order to increase emissitivity.
Abstract:
Methods for cleaning a first group of electrodes contained within an air conditioner are provided. A second group of electrodes within the air conditioner has a cleaning device fastened therewith. The cleaning device engages the first group of electrodes. A method includes removing the second group of electrodes from the air conditioner, and replacing the second group of electrodes back into the air conditioner.
Abstract:
An electrode cleaner for an electro-kinetic transporter-conditioner includes a mechanism to clean one or more the wire-like electrodes of a first electrode array. A length of flexible electrically insulating material projects from a base of a second electrode array towards and beyond the first electrode array. The distal end of the material includes a slit that engages a corresponding wire-like electrode. As a user moves the second electrode array up or down within the conditioner housing, friction between slit edges and the wire-like electrode cleans the electrode surface. The sheet material maybe biasedly pivotably attached to the base of the second electrode array, and may be urged away from and generally parallel to the wire-like electrodes when the conditioner is in use.