Abstract:
An object of the invention is a method for at least partially treating biologically active sols, gels, mixtures or composites of sols and gels, and/or sol-gel derived materials, said sols, gels, mixtures or composites of sols and gels, and/or sol-gel derived materials comprising OH-groups and being at least partially amorphous, the said treatment being performed with a localised electromagnetic and/or acoustic energy. Other objects of the invention are a method for coating a device with biologically active sols, gels, mixtures or composites of sols and gels, and/or sol-gel derived materials and a method for modifying the biological activity of biologically active sols, gels, mixtures or composites of sols and gels, and/or sol-gel derived materials. All these methods use treatment with localised electromagnetic and/or acoustic energy. The invention also relates to the use of said method for the fabrication of different devices and to the attachment of at least two devices.
Abstract:
A method and apparatus (20) for manufacturing optical components. A burner (24) generates soot (22), and a surface area collector (26) collects the soot (22). The burner (24) is disposed such that the soot (22) collected within the surface area collector (26) is substantially not reheated by subsequently deposited soot (22). Magnetic forces (50) direct the soot to desired location(s) within the surface area collector (26). The surface area collector (26) operates at relatively low temperatures sufficient to retain rather volatile substances, such as fluorine, in the soot (22).
Abstract:
A method of producing, by flame hydrolysis, a fused silica glass containing titania which comprises delivering a mixture of a silica precursor and a titania precursor in vapor form to a flame, passing the vapor mixture through the flame to form SiO2-TiO2 particles, and depositing the particles within a furnace (40) where they melt to form a solid glass body (44).
Abstract:
Optical waveguide core compositions comprising a core containing two dopants in a silica based glass, wherein one of the dopants is titania. The core composition serves to suppress the presence of Ti and to preserve refractive index profile shape throughout the preform manufacturing process.
Abstract:
A new optical fiber and method of manufacturing the same developed for use with surgical laser systems. The fiber core utilizes an ultra-low expansion (ULE) material. The preferred ULE fiber consists of silicon dioxide core doped with titanium dioxide which is cladded and jacketed for chemical and abrasion resistance. The resulting fiber is stable against degradation due to thermal expansion.
Abstract:
Die Erfindung betrifft ein Verfahren zur Herstellung eines Rohlings aus Titandotiertem, hochkieselsäurehaltigem Glas mit einem vorgegebenen Fluorgehalt für den Einsatz in der EUV-Lithographie, wobei der thermische Ausdehnungskoeffizient über die Einsatztemperatur möglichst stabil bei Null liegt. Der Verlauf des thermischen Ausdehnungskoeffizienten von Ti-dotiertem Kieselglas hängt von mehreren Einflussfaktoren ab. Neben dem absoluten Titan-Gehalt ist die Verteilung des Titans von großer Bedeutung, wie auch der Anteil und die Verteilung von weiteren Dotierelementen, wie etwa Fluor. Erfindungsgemäß wird ein Verfahren vorgeschlagen, das einen Syntheseprozess umfasst, bei dem fluordotierte TiO 2 -SiO 2 -Sootpartikel erzeugt und durch Konsolidieren und Verglasen zu dem Rohling weiterverarbeitet werden, dadurch gekennzeichnet, dass der Syntheseprozess einen Verfahrensschritt umfasst, bei dem mittels Flammenhydrolyse von Silizium und Titan enthaltenden Ausgangssubstanzen TiO 2 -SiO 2 -Sootpartikel gebildet werden und einen nachfolgenden Verfahrensschritt, in dem die TiO 2 -SiO 2 -Sootpartikel in einem bewegten Pulverbett einem Fluor enthaltenden Reagenz ausgesetzt und zu den fluordotierten TiO 2 -SiO 2 -Sootpartikeln umgesetzt werden.
Abstract:
An optical fiber having increased mechanical strength is provided. The optical fiber includes an over cladding layer that has a compressive stress of at least 100 MPa.
Abstract:
The invention relates to a method for the production of a mirror element (10) that has a reflective coating (10a) for the EUV wavelength range and a substrate (10b), the method comprising: pre-compacting the substrate (10b) by hot isostatic pressing, and applying the reflective coating (10a) to the pre-compacted substrate (10b). In the method, either the pre-compacting of the substrate (10b) is performed until a saturation value of the compaction of the substrate (10b) by long-term EUV irradiation is reached, or, for further compaction, the pre-compacted substrate (10b) is irradiated, especially homogeneously, with ions (16) and/or with electrons in a surface region (15) in which the coating (10a) has been or will be applied. The invention also relates to a mirror element (10) for the EUV wavelength range having a substrate (10b) pre-compacted by hot isostatic pressing, and to an EUV projection exposure system having at least one such mirror element (10).