Abstract:
One image is displayed in a period as one frame, which includes one charge accumulation period and one light emission period. In the charge accumulation period, all electron emitters are scanned, and voltages depending on the luminance levels of corresponding pixels are applied to the electron emitters which correspond to pixels to be turned on (to emit light), to accumulate charges (electrons) in amounts depending on the luminance levels of corresponding pixels in the electron emitters which correspond to pixels to be turned on. In the next light emission period, a constant voltage is applied to all the electron emitters to emit electrons in amounts depending on the luminance levels of corresponding pixels from the electron emitters which correspond to pixels to be turned on, thereby emitting light from the pixels to be turned on.
Abstract:
A display device which can operate at lower driving voltages and have improved luminous efficiency is disclosed. The display device includes: a first substrate and a second substrate with a plurality of cells therebetween, a plurality of first and second electrodes arranged between the first and second substrates, insulating layers respectively formed on the first electrodes. Electrons are accelerated and emitted into the cells when voltages are applied to the first and second electrodes. A gas within the cells is excited by the electrons, and light emitting layers formed between the first and second substrates or on outer sides of the first and second substrates emits light.
Abstract:
An emitter includes an electron source and a cathode. The cathode has an emissive surface. The emitter further includes a continuous anisotropic conductivity layer disposed between the electron source and the emissive surface of the cathode. The anisotropic conductivity layer has an anisotropic sheet resistivity profile and provides for substantially uniform emissions over the emissive surface of the emitter.
Abstract:
[Problems] To provide a dielectric component which remedies the degradation of amount of electron emission of an electron emitter. [Means to Solve the Problems] Provided is a dielectric composition which, when applied to an electron emitter, enables suppression of reduction of electron emission quantity with passage of time. The dielectric composition contains, as a primary component, a PMN-PZ-PT ternary solid solution composition represented by the following formula PbxBip(Mgy/3Nb2/3)aTib-zMzZrcO3 [wherein x, p, and y satisfy the following relations: 0.85≦x≦1.05, 0.02≦p≦0.1, and 0.8≦y≦1.0; a, b, and c are decimal numbers falling within a region formed by connecting the following five points (0.550, 0.425, 0.025), (0.550, 0.150, 0.300), (0.100, 0.150, 0.750), (0.100, 0.525, 0.375), and (0.375, 0.425, 0.200); z satisfies the following relation: 0.02≦z≦0.10; and M is at least one element selected from among Nb, Ta, Mo, and W], and contains Ni in an amount of 0.05 to 2.0 wt. % as reduced to NiO.
Abstract translation:[问题]提供补偿电子发射体的电子发射量的劣化的电介质成分。 解决问题的手段提供一种电介质组合物,当应用于电子发射体时,可以抑制电子发射量随时间的减少。 电介质组合物含有作为主要成分的由下式表示的PMN-PZ-PT三元固溶体组合物Pb(Mg y / y) 3 Nb 2/3 3)a z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z z / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / / 其中x,p和y满足以下关系:0.85 <= x <= 1.05,0.02 <= p <= 0.1,0.8 <= y <= 1.0; a,b,c是分别连接以下五个点(0.550,0.425,0.025),(0.550,0.150,0.300),(0.100,0.150,0.7050),(0.100,0.525,0.375),(0.100,0.525,0.375), )和(0.375,0.425,0.200); z满足以下关系:0.02 <= z <= 0.10; 并且M是选自Nb,Ta,Mo和W中的至少一种元素,并且含有0.05-2.0重量%的Ni。 %减少到NiO。
Abstract:
Metal-insulator-metal planar electron emitters (PEES) have potential for use in advanced lithography for future generations of semiconductor devices. The PEE has, however, a limited lifetime, which restricts its commercial applicability. It is believed that the limited lifetime of the PEE is limited by in-diffusion of metal ions from the anode. The in-diffusion may be countered in a number of different ways. One way is to cool the PEE to temperatures below room temperature. This lowers the metal ion mobility, and so the metal ions are less likely to diffuse into the insulator layer. Another way is to occasionally reverse the electrical potential across the PEE from the polarity used to generate the electron beam. This counteracts the electrical driving force that drives the positively charged metal ions from the PEE anode to the PEE cathode.
Abstract:
An electron emitter includes a lower electrode formed on a glass substrate, an emitter section made of dielectric film formed on the lower electrode, and an upper electrode formed on the emitter section. A drive voltage for electron emission is applied between the upper electrode and the lower electrode. At least the upper electrode has a plurality of through regions through which the emitter section is exposed. The upper electrode has a surface which faces the emitter section in peripheral portions of the through regions and which is spaced from the emitter section.
Abstract:
An emitter includes an electron source and a cathode. The cathode has an emissive surface. The emitter further includes a continuous anisotropic conductivity layer disposed between the electron source and the emissive surface of the cathode. The anisotropic conductivity layer has an anisotropic sheet resistivity profile and provides for substantially uniform emissions over the emissive surface of the emitter.
Abstract:
One image is displayed in a period as one frame, which includes one charge accumulation period and one light emission period. In the charge accumulation period, all electron emitters are scanned, and voltages depending on the luminance levels of corresponding pixels are applied to the electron emitters which correspond to pixels to be turned on (to emit light), to accumulate charges (electrons) in amounts depending on the luminance levels of corresponding pixels in the electron emitters which correspond to pixels to be turned on. In the next light emission period, a constant voltage is applied to all the electron emitters to emit electrons in amounts depending on the luminance levels of corresponding pixels from the electron emitters which correspond to pixels to be turned on, thereby emitting light from the pixels to be turned on.
Abstract:
Metal-insulator-metal planar electron emitters (PEEs) have potential for use in advanced lithography for future generations of semiconductor devices. The PEE has, however, a limited lifetime, which restricts its commercial applicability. It is believed that the limited lifetime of the PEE is limited by in-diffusion of metal ions from the anode. The in-diffusion may be countered in a number of different ways. One way is to cool the PEE to temperatures below room temperature. This lowers the metal ion mobility, and so the metal ions are less likely to diffuse into the insulator layer. Another way is to occasionally reverse the electrical potential across the PEE from the polarity used to generate the electron beam. This counteracts the electrical driving force that drives the positively charged metal ions from the PEE anode to the PEE cathode.
Abstract:
One image is displayed in a period as one frame, which includes one charge accumulation period and one light emission period. In the charge accumulation period, all electron emitters are scanned, and voltages depending on the luminance levels of corresponding pixels are applied to the electron emitters which correspond to pixels to be turned on (to emit light), to accumulate charges (electrons) in amounts depending on the luminance levels of corresponding pixels in the electron emitters which correspond to pixels to be turned on. In the next light emission period, a constant voltage is applied to all the electron emitters to emit electrons in amounts depending on the luminance levels of corresponding pixels from the electron emitters which correspond to pixels to be turned on, thereby emitting light from the pixels to be turned on.