Abstract:
The present invention provides a tetrahydrofuran purge stream treatment process, and a process for manufacturing polyether glycol comprising same. The process for treating a tetrahydrofuran stream purged from a polyether glycol manufacturing process comprises steps of neutralizing acidic substances in a tetrahydrofuran stream purged from the polyether glycol manufacturing process with an aqueous base solution, feeding the neutralized effluent to an azeotropic distillation column, and distilling tetrahydrofuran and water overhead from the azeotropic distillation column. The process can further comprise a step of disposing of the neutralized salts and excess base in the aqueous bottoms stream from the azeotropic distillation column. The process can further comprise steps of recovering THF from the overhead of the azeotropic distillation column, and recycling the recovered THF to a polyether glycol manufacturing process.
Abstract:
The present invention relates to reduction of corrosion. The present invention includes a method of decreasing corrosion during ammonia extraction. The method includes performing a process to extract ammonia using ammonia extraction equipment. The ammonia extraction equipment includes an ammonia absorber, an ammonia desorber, and an aqueous solution. The aqueous solution includes an acid or an ammonium salt thereof. The method also includes sparging an oxygen-containing gas into the solution in the ammonia absorber, the ammonia desorber, or therebetween. The invention also provides a system that can perform the method.
Abstract:
A process of hydrolyzing a monodentate, bidentate or tridentate phosphorus-based phosphite ester ligand or ligand blend for a transition metal catalyst comprising contacting the ligand or ligand blend with a hydrolysis catalyst of the formula (R11X11)nP(OH)3-n where n is 0, 1 or 2 wherein the ligand or ligand blend comprises one or more of (i) a bidentate biphosphite ligand of formula (III), (R12—X12)(R13—X13)P—X14—Y—X24—P(X22—R22)(X23—R23), (ii) a tridentate triphosphite ligand of formula (IIIA) (R12—X12)(R13—X13)P—X14—Y—X32—P(X34—R34)—(X33—Y2—K24—P(X23—R23)—(X22—R22) or (iii) a monodentate phosphite ligand of formula (IV) P(X1—R1)(X2—R2)(X3—R3) where each X is oxygen or a bond and each Y is an optionally substituted C6-C20 arylene, followed by separation of the ligand hydrolysis products.
Abstract:
A process of stabilizing a bidentate or tridentate phosphorus-based phosphite ester ligand or mixture thereof in a hydrocyanation reaction milieu comprising water, wherein the ligand or ligand mixture comprises one or more of (i) a bidentate biphosphite ligand of formula (III), (R12—X12) (R13—X13) P—X14—Y—X24—P(X22—R22) (X23—R23) or (ii) a tridentate triphosphite ligand of formula (IIIA) (R12—X12) (R13—X13) P—X14—Y—X32—P(X34—R34)—(X33—Y2—R24—P(X23—R23)—(X22—R22) where each X is oxygen or a bond and each Y is an optionally substituted C6-C20 arylene group, comprising admixing the bidentate and/or tridentate with a stabilizing amount of one or more monodentate phosphite ligand of formula P(X1—R1)(X2—R2)(X3—R3) where each X is oxygen or a bond, wherein the monodentate ligand has a rate of hydrolysis greater than the rate of hydrolysis of the bidentate or tridentate ligand in the presence of water in a hydrocyanation reaction milieu, and thereby preserve concentrations and proportions of the bidentate and/or tridentate ligand(s) in the ligand blend.
Abstract:
The present invention provides an improved process for recovering butanol from a mixture comprising water, methanol, propanol, butanol and optionally other organic compounds. More particularly, the invention relates to a process for recovering butanol as an essentially pure product from a mixture comprising water, methanol, propanol, butanol and other organic compounds.
Abstract:
This document describes biochemical pathways for producing butadiene by forming two vinyl groups in a butadiene synthesis substrate. These pathways described herein rely on enzymes such as, inter alia, a decarboxylating thioesterase, cytochrome P450, or dehydratases for the final enzymatic step.
Abstract:
A process for synthesizing dodecane-1,12-diol, and by-products thereof, by the reduction of lauryl lactone produced from the oxidation of cyclododecanone.
Abstract:
Embodiments of the invention relate to the enzymatic conversion of bioderived feedstocks to commercially valuable chemicals. The enzymatic conversions of the embodiments of the invention offer the potential for lower cost routes to these value-added chemicals. Some of the chemicals that are useful include nylon intermediates such as caprolactam, adipic acid, 1,6-hexamethylene diamine; butanediols such as 1,4-butanediol, 1,3-butanediol, and 2,3-butanediol; butanols such as 1-butanol, and 2-butanol; succinic acid, butadiene, isoprene, and 3-hydroxypropanoic acid.
Abstract:
Composite yarns, comprising one or more elastomeric fibers and hard yarns, are formed by adhering the elastomeric fibers and hard yarns together using a size material. The size-covered composite yarn can be used in weaving and knitting to make stretch fabrics with desired garment characteristics. The size material may be removed by subsequent wet fabric processing.
Abstract:
Disclosed herein are methods for recovering diphosphite-containing compounds from mixtures comprising organic mononitriles and organic dinitriles, using liquid-liquid extraction. Also disclosed are treatments to enhance extractability of the diphosphite-containing compounds.