Abstract:
A semiconductor integrated circuit capable of protection from card hacking, by which erroneous actions are actively induced by irradiation with light and protected secret information is illegitimately acquired, is to be provided. Photodetectors, configured by a standard logic process, hardly distinguishable from other circuits and consumes very little standby power, are mounted on a semiconductor integrated circuit, such as an IC card microcomputer. Each of the photodetectors, for instance, has a configuration in which a first state is held in a static latch by its initializing action and reversal to a second state takes place when semiconductor elements in a state of non-conduction, constituting the static latch of the first state, is irradiated with light. A plurality of photodetectors are arranged in a memory cell array. By incorporating the static latch type photodetector into the memory array, they can be arranged inconspicuously. Reverse engineering by irradiation with light can be effectively prevented.
Abstract:
To realize compatibility with an SIM card and adaptation to a high-speed memory access in an IC card module having a microcomputer and a memory card controller. An IC card module includes a plurality of first external connecting terminals and a plurality of second external connecting terminals both exposed to one surface of a card substrate, a microcomputer connected to the first external connecting terminals, a memory controller connected to the second external connecting terminals, and a volatile memory connected to the memory controller. The shape of the card substrate and the layout of the first external connecting terminals are based on a standard of plug-in UICC of ETSI TS 102 221 V4.4.0 (2001-10) or have compatibility. The second external connecting terminals are disposed outside the minimum range of the terminal layout based on the standard for the first external connecting terminals. The first and second external connecting terminals respectively include signal terminals electrically separated from one another.
Abstract:
This invention is to provide an ultra-miniaturized, thin-sized memory card provided with a mechanism for preventing a wrong insertion to a memory card slot. Amulti-functionmemory card is composed of a card body and a cap for housing the card body. The card body is made of mold resin that encapsulates plural semiconductor chips mounted on a main surface of a wiring substrate. The card body is housed into the cap with the back face of the wiring substrate facing outward. Guide channels are provided at both side faces of the cap for preventing that the card is inserted upside down. Further, a convex section is provided at the trailing edge of the cap for preventing that the card is inserted in the wrong direction.
Abstract:
When resistivity against errors caused by cosmic ray neutrons in a semiconductor device is evaluated, the storage (120) in the evaluation apparatus stores multiple spectrum data of white neutrons having different spectrum shapes, and multiple SEE counts obtained by the white neutron method using this multiple spectrum data. A computing section (100) performs processing, with respect to each spectrum data, to read out the spectrum data from the storage, divide the data into multiple energy groups, calculates and stores a total flux of each energy group. Furthermore, the computing section reads out from the storage, the SEE counts with respect to each of the multiple spectrum data and the total flux of each energy group, substitutes the SEE counts and the total flux into a simultaneous equation, where a product of matrix elements indicating the total flux of each of the energy groups as to each of the multiple spectrum data and vectors indicating the SEE cross section of each of the energy groups represents the SEE count as to each of the multiple spectrum data, and calculates the SEE cross section for each of the energy groups. Subsequently, the computing section performs a calculation so that parameters are calculated, which determine a formula of the approximate function of the SEE cross section as a function of energy, so that computed values of error counts obtained by integration of multiple spectra and the approximate function sufficiently match the actual measured values thereof. With the processing as described above, there has been achieved an error evaluation in the semiconductor device using white neutrons independent from an accelerator.
Abstract:
Of three chips (2A), (2B), and (2C) mounted on a main surface of a package substrate (1) in a multi-chip module (MCM), a chip (2A) with a DRAM formed thereon and a chip (2B) with a flash memory formed thereon are electrically connected to wiring lines (5) of the package substrate (1) through Au bumps (4), and a gap formed between main surfaces (lower surfaces) of the chips (2A), (2B) and a main surface of the package substrate (1) is filled with an under-fill resin (6). A chip (2C) with a high-speed microprocessor formed thereon is mounted over the two chips (2A) and (2B) and is electrically connected to bonding pads (9) of the package substrate (1) through Au wires (8).
Abstract:
The invention comprises: processing for receiving an OFDM packet having a preamble and the following data transmission symbol, in which packet the subcarrier interval of the preamble is set wider than that of the data transmission symbol; processing for estimating a DC offset occurring at a receiving side by using the received preamble; processing for correcting the DC offset on the received data transmission symbol, according to the estimation result of the DC offset; and processing for demodulating the DC offset corrected data transmission symbol. Thus, it is possible to estimate a DC offset and then correct the DC offset according to the estimated value, in the OFDM packet with no nul symbol defined there.
Abstract:
An electrically writable/erasable nonvolatile semiconductor memory such as an AND-type or NOR-type flash memory having an array structure, in which numerous memory cells are connected in parallel between common bit lines and source lines, is capable of readily detecting a memory cell in depletion failure which occurs in the event of a power supply cutoff during a memory cell threshold voltage shift-down operation by the writing or erasing operation. In operation, at the entry of a certain command or at the time of power-on, all word lines are unselected and bit line selecting switches are turned on to find the presence of a memory cell having a current flow due to depletion failure with sense amplifiers connected to the bit lines. On finding the presence of a failing cell, a voltage of selection level (VSS or negative voltage) is applied to each word line in turn, with remaining word lines being pulled to an unselection voltage level (negative voltage or VSS).
Abstract:
The present invention provides a semiconductor device having a power transistor of low ON resistance. The semiconductor device includes a metal-made header, a semiconductor chip which is fixed to the header and constitutes a MOSFET, and a sealing body made of insulating resin which covers the semiconductor chip, the header and the like. The semiconductor device further includes a drain lead which is contiguously formed with the header and projects from one side surface of the sealing body, and a source lead and a gate lead which project in parallel from one side surface of the sealing body, and wires which are positioned in the inside of the sealing body and connect electrodes on an upper surface of the semiconductor chip and source lead and the gate lead. In such a semiconductor device, a gate electrode pad is arranged at a position close to lead posts of the gate lead and the source lead and a source electrode pad is arranged at a position far from the lead posts of the gate lead and the source lead.
Abstract:
Heightening of breakdown voltage of a trench gate type power MISFET is actualized without increasing the number of manufacturing steps. In the manufacturing method of the semiconductor device according to the present invention, pnull type semiconductor region and pnull type field limiting rings are formed in a gate line area simultaneously in one impurity ion implantation step so as to bring them into contact with a groove having a gate extraction electrode formed therein. Upon formation, supposing that the width of the gate extraction electrode disposed outside the groove is CHSP, and the resistivity of the nnull type single crystal silicon layer 1B is null (nullnullcm), the CHSP is set to satisfy the following equation: CHSPnull3.80null0.148null.
Abstract:
The present invention provides a semiconductor device and a manufacturing method thereof which can make a ground/power source potential stable without reducing the number of pins for signals. The semiconductor device includes a plurality of leads, a tab having a size smaller than a size of a semiconductor chip, suspending leads connected to the tab and having suspending lead exposing portions, four bar leads connected to the suspending leads and arranged outside the semiconductor chip, first wires for connecting pads of the semiconductor chip and the leads, second wires for connecting the pads of the semiconductor chip and the bar leads, and a sealing body for sealing the semiconductor chip using resin. On a back surface of the sealing body, a distance between the suspending lead exposing portion and the lead exposing portion is set to a value equal to or more than a distance between the lead exposing portions. Due to such a constitution, the suspending leads can be used as external terminals and hence, the ground and the power source potential can be made stable.