Abstract:
This image encoding method encodes at least one unit contained in a picture, and includes: a first flag generating step (S221) for generating a first flag indicating whether or not the times that a virtual decoder reads encoded data from a buffer for storing the encoded data are set in units of the units; a second flat generating step (S222) for, when the times are set in units of the units, generating a second flag indicating whether the intervals between the read times of the plurality of units are fixed or arbitrary; and a bitstream generation step (S223) for generating an encoded bitstream containing the encoded data, the first flag, and the second flag.
Abstract:
This image encoding method encodes at least one unit contained in a picture, and includes: a first flag generating step (S221) for generating a first flag indicating whether or not the times that a virtual decoder reads encoded data from a buffer for storing the encoded data are set in units of the units; a second flat generating step (S222) for, when the times are set in units of the units, generating a second flag indicating whether the intervals between the read times of the plurality of units are fixed or arbitrary; and a bitstream generation step (S223) for generating an encoded bitstream containing the encoded data, the first flag, and the second flag.
Abstract:
A transmitting method according to one general aspect of the present disclosure includes: a packetizing step of packetizing (1) sample data, (2) first meta data and (3) second meta data that configure a file of an MP4 format, while the sample data is data obtained by encoding a video signal or an audio signal, the first meta data is used to decode the sample data, and the second meta data includes data that can be generated only after generation of the sample data and is used to decode the sample data; and a transmitting step of transmitting the packetized first meta data, the packetized sample data and the packetized second meta data in order.
Abstract:
A data transmission method according to one aspect of the present disclosure includes: generating a plurality of MPUs, reference clock time information, and leading clock time information indicating a leading PTS that is a clock time at which a leading access unit in the MPU is presented, transmitting the generated plurality of MPUs, reference clock time information, and leading clock time information, wherein the leading clock time information indicates the leading PTS of the plurality of MPUs of which presentation is started after the leading clock time information is transmitted in the generated plurality of MPUs, and each of the generated plurality of MPUs indicates a time point at which each access unit that does not exist in a head of the MPU is presented as a relative value to a time point of another access unit in the MPU.
Abstract:
A transmission method for transmitting encoded data obtained by hierarchically encoding a video image includes: generating an encoded stream that includes time information and the encoded data, the time information indicating a time at which decoding or displaying processing of the encoded data is performed, and transmitting the generated encoded stream, wherein the encoded data includes a plurality of sets each including a plurality of access units and the time information includes first time information which indicates a time at which the processing performed on a first access unit of the first set is performed and which is based on a reference clock, and second time information used to specify a time at which the processing performed on a second access unit of the second set is performed and which is based on the reference clock.
Abstract:
A recording medium according an aspect of the present disclosure has recorded therein a main video stream where a main video has been encoded, and a sub-video stream where a sub-video, that is to be superimposed on the main video and displayed, has been encoded. The sub-video stream includes bitmap data indicating a design of the sub-video and palette data specifying the display color of the design. The palette data includes first palette data for a first luminance dynamic range (SDR), and second palette data for a second luminance dynamic range (HDR) that is broader than the first dynamic range.
Abstract:
A playback device includes: an attribute readout unit that reads out first attribute information, indicating whether a dynamic range of luminance of the video stream is a first dynamic range or a second dynamic range, from a management information file recorded in the recording medium in a manner correlated with the video stream; a decoding unit that generates decoded video information by reading the video stream out from the recording medium and decoding the video stream; and an output unit that, in a case where the first attribute information that has been read out indicates the second dynamic range, outputs the decoded video information, along with maximum luminance information indicating a maximum luminance of the video stream in accordance with the second dynamic range.
Abstract:
A transmitting method according to one aspect of the present disclosure includes: transmitting video control information for reproduction of video data having an individually reproducible unit; transmitting the video data; determining a transmission order of audio control information for reproduction of audio data in a reproduction interval corresponding to a reproduction interval of the video data in such a way that the audio control information is transmitted after the video control information, and transmitting the audio control information according to the determined transmission order; and transmitting the audio data. Thus, in the receiving apparatus, a delay time from reception of data to reproduction of video and audio is shortened.