Abstract:
A liquid coatings application process and apparatus is provided in which supercritical fluids, such as supercritical carbon dioxide fluid, are used to reduce to application consistency viscous coatings compositions to allow for their application as liquid sprays.
Abstract:
A process which comprises (i) the generation of release surfaces by application to predetermined areas of a solid surface of a solution, suspension or dispersion of a release agent and a supercritical fluid that vaporizes from the release agent, (ii) the deposition of a mass onto the release surface containing the release agent, and (iii) the separation of the mass or a product derived from the mass from such surface covered by the release agent. Novel apparatus for carrying out the process are described.
Abstract:
Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. The solvent is vaporized and pumped away. Solution pressure is varied to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solution temperature is varied in relation to formation of a two-phase system during expansion to control porosity of the film or powder. A wide variety of film textures and powder shapes are produced of both organic and inorganic compounds. Films are produced with regular textural feature dimensions of 1.0-2.0 .mu.m down to a range of 0.01 to 0.1 .mu.m. Powders are formed in very narrow size distributions, with average sizes in the range of 0.02 to 5 .mu.m.
Abstract:
Solid films are deposited, or fine powders formed, by dissolving a solid material into a supercritical fluid solution at an elevated pressure and then rapidly expanding the solution through a short orifice into a region of relatively low pressure. This produces a molecular spray which is directed against a substrate to deposit a solid thin film thereon, or discharged into a collection chamber to collect a fine powder. Upon expansion and supersonic interaction with background gases in the low pressure region, any clusters of solvent are broken up and the solvent is vaporized and pumped away. Solute concentration in the solution is varied primarily by varying solution pressure to determine, together with flow rate, the rate of deposition and to control in part whether a film or powder is produced and the granularity of each. Solvent clustering and solute nucleation are controlled by manipulating the rate of expansion of the solution and the pressure of the lower pressure region. Solution and low pressure region temperatures are also controlled.
Abstract:
A substrate processing method includes forming a film of an ionic liquid on a surface of a substrate, on which a pattern is formed, by supplying the ionic liquid to the surface of the substrate, wherein the ionic liquid has a cation containing a hydrocarbon chain having six or more carbon atoms, and wherein at least one hydrogen atom in the hydrocarbon chain is substituted with a fluorine atom.
Abstract:
Embodiments relate to surface treating a substrate, spraying precursor onto the substrate using supercritical carrier fluid, and post-treating the substrate sprayed with the precursor to form a layer with nanometer thickness of material on the substrate. A spraying assembly for spraying the precursor includes one or more spraying modules and one or more radical injectors at one or more sides of the spraying module. A differential spread mechanism is provided between the spraying module and the radical injectors to inject spread gas that isolates the sprayed precursor and radicals generated by the radical injectors. As relative movement between the substrate and the spraying assembly is made, portions of the substrate is exposed to first radicals, sprayed with precursors either one of the spraying modules or both spraying modules using supercritical carrier fluid, and then exposed to second radicals again.
Abstract:
A substrate processing method includes forming a film of an ionic liquid on a surface of a substrate, on which a pattern is formed, by supplying the ionic liquid to the surface of the substrate, wherein the ionic liquid has a cation containing a hydrocarbon chain having six or more carbon atoms, and wherein at least one hydrogen atom in the hydrocarbon chain is substituted with a fluorine atom.
Abstract:
An improved superhydrophobic coating and a process of making it is provided herein. More particularly, a robust superhydrophobic coating is produced by using carbon dioxide to enhance the integration of a binder material into the superhydrophobic coating. The carbon dioxide may be used to infiltrate and fill the interstitial voids of a superhydrophobic material, such as diatomaceous earth. Consequently, occupying these voids in the superhydrophobic material effectively blocks other components (e.g., binders) from entering the voids. As a result, the coating formulations of the present invention are more robust and may strongly adhere to the substrates to which they are applied.
Abstract:
A method of coating frame sealant and device are disclosed, to coat areas having different shapes and widths with the frame sealant. The method of coating frame sealant comprises the steps of dividing an area to be coated with frame sealant on a display panel into different subareas based on a contour of the area, the subareas comprising a linear-type subarea to be coated with the frame sealant and a curve-type subarea to be coated with the frame sealant; providing a coating instruction for each subarea to be coated with the frame sealant among the different subareas; and coating the frame sealant to the subarea according to the coating instruction.
Abstract:
The present invention refers to a method for preparing a superhydrophobic surface on a solid substrate comprising the steps of (a) providing a solvent in the form of a pressurized fluid in a vessel, wherein the fluid exhibits a decrease in solvency power with decreasing pressure; (b) adding a hydrophobic substance to the solvent as a solute, which substance is soluble with the pressurized fluid and has the ability to crystallize/precipitate after expansion of the fluid, thereby obtaining a solution of the solvent and the solute in the vessel; (c) having at least one orifice opened on the vessel, thereby causing the pressurized solution to flow out of the vessel and depressurize in ambient air or in an expansion chamber having a lower pressure than within the vessel, the solute thereby forming particles; and (d) depositing the particles on the substrate in order to obtain a superhydrophobic surface. Hereby, a pressurized fluid which expands rapidly as a result of depressurization is used to prepare the superhydrophobic surface, thereby facilitating the preparation of the surface. Moreover, the invention refers to an arrangement for preparing a superhydrophobic surface on a substrate, a superhydrophobic film prepared by the method of the invention, and a substrate having deposited thereon the superhydrophobic firm.