Abstract:
Expanded polyethylene resin particles include an antistatic agent and a base resin. The expanded polyethylene resin particles are obtained by expanding polyethylene resin particles including the antistatic agent and the base resin, the polyethylene resin particles having a storage modulus of elasticity of 900 to 5000 Pa at an angular frequency of 1 rad/sec in dynamic viscoelastic behavior measurement at 190° C. and a storage modulus of elasticity of 100000 Pa or less at an angular frequency of 100 rad/sec in dynamic viscoelastic behavior measurement at 190° C. The expanded polyethylene resin particles have a low temperature side melting peak and a high temperature side melting peak on a differential scanning calorimetry (DSC) curve obtained when a temperature of the expanded polyethylene resin particles is increased from 20° C. to 220° C. at a heating rate of 10° C./min.
Abstract:
The present invention provides expanded polylactic acid resin beads, in which each bead is composed of a core layer that is in an expanded state and contains a crystalline polylactic acid resin, and a coating layer that coats the core layer and contains a mixed resin of an amorphous polylactic acid resin and a crystalline polyolefin resin, wherein the content of the crystalline polyolefin resin in the coating layer is 3% by weight or more and less than 50% by weight. The expanded polylactic acid resin beads can stably produce a molded article of expanded polylactic acid resin beads excellent in fusibility of the expanded polylactic acid resin beads therein and also excellent in solvent resistance.
Abstract:
The present invention is concerned with expanded propylene resin beads including a core layer being in a foamed state and constituted of a propylene-based resin composition (a) and a cover layer constituted of an olefin-based resin (b), the propylene-based resin composition (a) satisfying the following (i) and (ii), and the olefin-based resin (b) satisfying the following (iii) or (iv). (i) A mixture of 75% by weight to 98% by weight of a propylene-based resin (a1) having a melting point of 100° C. to 140° C. and 25% by weight to 2% by weight of a propylene-based resin (a2) having a melting point of 140° C. to 165° C. (ii) A difference between the melting point of the resin (a2) and the melting point of the resin (a1) is 15° C. or more. (iii) A crystalline olefin-based resin having a melting point TmB that is lower than a melting point TmA of the composition (a) and having a relation of 0° C.
Abstract:
The invention relates to a process for the production of prefoamed poly(meth)acrylimide (P(M)I) particles which can be further processed to give foam mouldings or composites. A feature of this process is that a polymer granulate is first heated and thus prefoamed in an apparatus by means of IR radiation of a wavelength suitable for this purpose. Said granulate can be further processed in subsequent steps, e.g. in a press mould with foaming to give a moulding or a composite workpiece with foam core.
Abstract:
An electrostatic dissipating molded article having a surface resistivity of 1×105 to 1×1010Ω and obtained by in-mold molding of multi-layered polyolefin-based resin expanded beads each having an polyolefin-based resin expanded core layer and a polyolefin-based resin cover layer which covers the polyolefin-based resin expanded core layer and which is formed from a polyolefin-based resin (A), a polymeric antistatic agent (B) of a block copolymer of a polyether block and a polyolefin block, and an electrically conductive carbon black (C), the components (A) to (C) being present in a specific proportion.
Abstract:
Polystyrene-based composite resin particles includes 100 to 500 parts by weight of a polystyrene-based resin with respect to 100 parts by weight of an ethylene-vinyl acetate copolymer resin. The polystyrene-based composite resin particles are impregnated with a volatile blowing agent and are pre-expanded to obtain pre-expanded particles; the obtained pre-expanded particles are immersed in tetrahydrofuran for 24 hours to obtain an extract A; and the pre-expanded particles are divided into two halves through the center to prepare halved particles, and the halved particles are immersed in tetrahydrofuran for 24 hours to obtain an extract B; and the obtained extract A and extract B are subjected to a GPC (gel permeation chromatography) measurement and obtain the following results: the polystyrene-based resin having a weight-average molecular weight (Mw) of 100,000 to 500,000 gives a peak obtained from chromatograms for the extract A and for the extract B.
Abstract:
A method for producing cross-linked polyethylene resin expanded beads, including dispersing polyethylene resin particles containing a halogen-containing flame retardant in a dispersing medium in an autoclave, impregnating the dispersed resin particles with an organic peroxide and cross-linking the polyethylene resin therewith at a specific temperature range determined by the melting point of the polyethylene resin and by melting point or glass transition temperature of the flame retardant, impregnating the dispersed resin particles with a blowing agent, and then foaming and expanding the resulting cross-linked polyethylene-based resin particles.
Abstract:
A noncrosslinked polyethylene resin expanded particle is provided having a bulk density BD in a range of 10 g/L to 100 g/L, the particle being obtained by expanding a polyethylene resin particle whose density is in a range of 0.920 g/cm3 to 0.940 g/cm3, the noncrosslinked polyethylene resin expanded particle having a shrinkage factor in a range of 2% to 30%, the shrinkage factor being obtained by the following formula (1): Shrinkage Factor=(BD−VBD)×100/VBD (1), wherein: the BD of the noncrosslinked polyethylene expanded particle is a bulk density at 23° C. and at 0.1 MPa (at a normal atmospheric pressure); and the VBD of the noncrosslinked polyethylene expanded particle is a bulk density at 23° C. and at a reduced pressure of 0.002 MPa or less.
Abstract translation:提供了一种非交联聚乙烯树脂发泡粒子,其堆积密度BD在10g / L至100g / L的范围内,该颗粒是通过使密度为0.920g / cm 3至0.940的聚乙烯树脂颗粒膨胀而获得的 g / cm3,收缩率在2%〜30%的收缩率的非交联聚乙烯树脂发泡体,收缩率由下式(1)求出:收缩系数=(BD-VBD)×100 / VBD( 1),其中:非交联聚乙烯发泡粒子的BD为23℃,0.1MPa(正常大气压)时的体积密度; 非交联聚乙烯发泡粒子的VBD为23℃,0.002MPa以下的减压下的体积密度。
Abstract:
Expanded composite polystyrene-based resin particles having a plurality of cells and cell membranes separating the plurality of cells, said cell membranes including a polystyrene-based resin forming a continuous phase and polyacrylic acid alkyl ester-based resin fine particles dispersed in said continuous phase to form a dispersed phase, and said polystyrene-based resin being complexed with said polyacrylic acid alkyl ester-based resin fine particles, wherein said dispersed phase is present in the form of a plurality of layers in a cell membrane thickness direction in a cell membrane cross-section of said expanded composite polystyrene-based resin particles.
Abstract:
Polypropylene resin expanded particles include polypropylene resin as base material resin having at least two melting peaks on a DSC curve, the at least two melting peaks including (i) a lowest-temperature melting peak of 100° C. or more but 130° C. or less and (ii) a highest-temperature melting peak of 140° C. or more but 160° C. or less, so that the expanded particles: produce an in-mold foaming molded product at a very low mold heating steam pressure; exhibit low distortion, low shrinkage, and a wide range of heating condition for molding, even if the mold heating steam pressure is increased; have satisfactory moldability when the expanded particles are molded by using a mold having a complicated shape or a large mold; and maintain properties such as compressive strength, substantially unimpaired, when the expanded particles make the in-mold foaming molded product.