Abstract:
In an elevator rope, a plurality of steel outer layer strands are twisted together on an outer circumference of an inner layer rope. The inner layer rope has: a fiber core; a plurality of steel inner layer strands that are twisted together directly onto an outer circumference of the fiber core; and a resin inner layer rope coating body that is coated onto the outer circumference. A diameter of the inner layer strands is smaller than a diameter of the outer layer strands. The inner layer strands are greater in number than the outer layer strands.
Abstract:
A hybrid rope (40) or a hybrid strand (50) comprising a core element (42, 52), a first (44, 54) and a second (46, 56) metallic closed layer surrounding said core element (42, 52). The core element (42, 52) includes a bundle of synthetic yarns. The first metallic closed layer (44, 54) includes a plurality of first strands of wires helically twisted together with the core element (42, 52) in a first direction. The second metallic closed layer (46, 56) includes a plurality of second wires or strands helically twisted together with said core element (42, 52) and said first metallic closed layer (44, 54) in a second direction. The cross-sectional area of the core element (42, 52) is larger than the total cross-sectional area of the first (44, 54) and second (46, 56) metallic closed layers. A corresponding method of producing such a hybrid rope or hybrid strand is also disclosed.
Abstract:
The object of the invention is a traction sheave elevator and a rope (3) that contains metal as a load-bearing material, such as the suspension rope of an elevator, which rope comprises at least one or more strands (7) laid from metal wires (9) and which rope (3) is lubricated with a lubricant (8). Another object is the use of the aforementioned lubricant for lubricating the rope (3). The lubricant (8) comprises at least oil and thickener, which thickener in the lubricant (8) comprises at least 10% or more of the mass of the lubricant (8).
Abstract:
A controlled failure rope and method of making the same. The controlled failure rope comprises first and second portions. The first portion is formed of a first material having a first set of tension failure characteristics. The second portion is formed of a second material having a second set of tension failure characteristics. The first and second sets of tension failure characteristics differ such that, when the rope is subjected to tension loads above a tension threshold, the first portion of the rope begins to fail before the second portion of the rope, therefore providing a prior indication of possible rope failure before the rope becomes completed separated.
Abstract:
A reduced drag cable for use in vertical wind tunnels and other applications with a change in the spacing and/or size of the strands of a standard twisted wire cable is disclosed. The perimeter strands of one embodiment all have a standard diameter, with the exception of one or more wires with different diameter from the other perimeter strands. The different sized strand forms a helical feature around the cable, creating a non-circular profile to reduce drag in air.
Abstract:
A metal cord (100) comprising at least two metal strands (101 A-G). At least one strand (lOlD) is welded, said welded strand having an elongation at rupture of more than 30% of the elongation at rupture of an identical strand without weld.
Abstract:
Mesh cells (30) for machine-made netting (51) use pairs of mesh bars (35) made from a continuous length of material and meet at a common coupler (34). Such mesh bars (35) have a lay with a common direction throughout the length of material. In a zig-zag pattern used in knitting machine-made netting (31), the longitudinal axis of symmetry (38) of mesh bars (35) turns at each coupler (34). Towing such mesh bars (35) causes water to flow past pairs thereof in two different directions with respect to their common lay. The directions of water flow are neither parallel nor perpendicular to the longitudinal axis of symmetry (38) of the mesh bars (35). As water flows past the mesh bars (35), the cross-sectional shapes of the mesh bars (35) produce a net component of force that is oriented in a direction perpendicular to a combined drag component of force for the mesh bars (35).
Abstract:
To identify the need for replacement of stranded synthetic fiber ropes, preferably ropes of aramide fiber, a torsionally neutral rope construction of load-bearing fiber strands is obtained by having at least two layers of strands laid together in opposite directions so that the torsional forces in the layers of strands compensate each other. If the layers of the strands become weakened by unequal amounts due to wear or external influences, when the rope is under load and running operationally it begins to twist about its longitudinal axis. The twisting of the rope can be made visible by a colored mark or strip extending along the length of the rope to indicate twisting of the rope thereby providing visual identification of the need for replacement of the rope.
Abstract:
The twistless and/or weakly twisted wire rope or cable with the many strand many layer structure comprises a core rope and a cover layer stranded on the core rope in an opposite stranding direction. The core rope is made exclusively from substantially circular strands and the cover layer is made exclusively from only one layer of substantially flat strands.