Abstract:
The present invention relates to a vessel for a compressed gaseous fuel. The vessel has a non-cylindrical shape and is provided with a bulk head within the vessel. The vessel is surrounded by a composite comprising a fibre reinforcement that is wound around the vessel. The vessel comprises a liner with a shape that is substantially the same as the desired vessel shape. The liner is provided with at least one recess that extends around the liner and divides the liner in sections connected to each other by a passage. The fibre reinforcement is continuously wound around the liner in different directions to ensure sufficient vessel strength and the recess is filled with fibres so that the fibres in the recess constitute the bulk head. The invention further relates to a method for producing the claimed vessel.
Abstract:
A pressure vessel arranging and integrating a plurality of vessel structures each including a cylindrical liner opened at both ends and a fiber reinforced resin layer covering the outer periphery of the peripheral wall of the liner. Dome-shaped communicating members bulging outward are fixed across both respective ends of the liners of the vessel structures, thereby making the interiors of these liners communicate with each other and closing the open ends of these liners. This pressure vessel can be installed with no wasted space, and also allows an increase in capacity.
Abstract:
The invention regards a tank for storing of fluid at very low temperature, as LNG, which tank comprises external plates, forming roof, side walls and floor, and an internal cell structure with fluid communication between all the cells in the cell structure at floor level of the tank. At least a part of the external plate comprises a layered structure and where the internal cell structure is formed as self equilibrating support and or anchoring for the external plates. The invention also regards a cell structure for use in a tank for storing fluid.
Abstract:
The structural platform (11) of the vehicle comprises two tanks (T1) and (T2) for the storage on a vehicle of fluids under pressure. Each tank comprises at least one network of cells (2) connected to one another via orifices (3), the orifices being conformed so that the flow of fluid caused by the consumption of fluid necessary for the use of the vehicle exhibits only pressure drops which do not affect the use, and being conformed so that, in the event of rupture of one or more cells (2), the leakage flow causes sufficiently large pressure drops to limit the flow thereof.
Abstract:
A method of utilizing a divided pressure vessel in a processing system employing a carbon dioxide based solvent includes transferring a first carbon dioxide based treating solution from a first liquid chamber in a divided pressure vessel having a plurality of liquid chambers to a processing vessel, returning the first treating solution from the processing vessel to the divided pressure vessel, transferring a second carbon dioxide based treating solution having a composition different from the first treating solution from a second liquid chamber in the divided pressure vessel to a processing vessel, and returning the second treating solution from the processing vessel to the divided pressure vessel. A divided pressure vessel may allow multiple solvent baths each having a different chemical composition to be stored and/or processed in a single pressure vessel while maintaining the different chemical compositions of the multiple solvent baths. Thus, such divided pressure vessels may provide the improved operational efficiency of a carbon dioxide based system having multiple solvent baths while decreasing the capital costs that may be associated with such systems.
Abstract:
The invention provides apparatus for inflating an inflatable safety restraint cushion and associated methods for producing an inflation gas for inflating an inflatable safety restraint cushion which rely, at least in part, on Joule-Thomson heating.
Abstract:
A storage vessel for storing a fluid substance, said storage vessel including a plurality of abutting individually sealed storage chambers, each chamber capable of withstanding super atmospheric pressure, with adjacent chambers forming at least one fluid passageway therebetween, characterised in that at least one said chamber includes an external peripheral seal configured to be relatively weaker than the remainder of said vessel.
Abstract:
The present invention relates to a multi-cell tank (2) for pressurised gas formed by a group of tubes (2a) immersed in a fibrous resin body (4) and reinforced by means of external texture (7), closed with two covers that feature a intercommunicating series of domes on the internal side, which exactly match the opening of the tubes of the group.
Abstract:
The invention provides apparatus for inflating an inflatable safety restraint cushion and associated methods for producing an inflation gas for inflating an inflatable safety restraint cushion which rely, at least in part, on Joule-Thomson heating to form an inflation gas.
Abstract:
The structural platform (11) of the vehicle comprises two tanks (T1) and (T2) for the storage on a vehicle of fluids under pressure. Each tank comprises at least one network of cells (2) connected to one another via orifices (3), the orifices being conformed so that the flow of fluid caused by the consumption of fluid necessary for the use of the vehicle exhibits only pressure drops which do not affect the said use, and being conformed so that, in the event of rupture of one or more cells (2), the leakage flow causes sufficiently large pressure drops to limit the flow thereof.