Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support of the apparatus in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges may be a luminescence cartridge that includes an integrated detector that is movable toward and away from a sample carrier of the apparatus, and thus toward and away from a sample located at the sample carrier.
Abstract:
Optical computing devices are disclosed. One exemplary optical computing device includes an electromagnetic radiation source configured to optically interact with a sample and at least two integrated computational elements. The at least two integrated computational elements may be configured to produce optically interacted light, and at least one of the at least two integrated computational elements may be configured to be disassociated with a characteristic of the sample. The optical computing device further includes a first detector arranged to receive the optically interacted light from the at least two integrated computational elements and thereby generate a first signal corresponding to the characteristic of the sample.
Abstract:
The invention relates to a system and a method for optical measurement of a target, wherein the target is illuminated, either actively illuminated, reflecting ambient light, or self illuminating, and a measurement light beam received from the target or through it is detected. The prior art optical measurement systems generally include mechanical filter wheels and photomultiplier tubes, which cause the equipment to be expensive, large-sized and often not sufficiently accurate and stable. The objective of the invention is achieved with a solution, in which the illuminating light beam and/or measurement light beam is led through a Fabry-Perot interferometer or a set of two or more Fabry-Perot Interferometers, and the Fabry-Perot interferometer or a set of two or more Fabry-Perot Interferometers is controlled into different modes during the measurement of a single target. The invention can be applied in optical measurements where, for example, reflectance, absorption of fluorescence of the target is measured.
Abstract:
The invention relates to methods and systems for measuring and/or monitoring the chemical composition of a sample (e.g., a process stream), and/or detecting specific substances or compounds in a sample, using light spectroscopy such as absorption, emission and fluorescence spectroscopy. In certain embodiments, the invention relates to spectrometers with rotating narrow-band interference optical filter(s) to measure light intensity as a function of wavelength. More specifically, in certain embodiments, the invention relates to a spectrometer system with a rotatable filter assembly with a position detector rigidly attached thereto, and, in certain embodiments, the further use of various oversampling methods and techniques described herein, made particularly useful in conjunction with the rotatable filter assembly. In preferred embodiments, the rotatable filter is tilted with respect to the rotation axis, thereby providing surprisingly improved measurement stability and significantly improved control of the wavelength coverage of the filter spectrometer.
Abstract:
A cartridge and cartridge system for use in an apparatus for analyzing a sample are provided. The system has a plurality of cartridges for different applications for a multimode instrument. The cartridges are removably engaged with a cartridge support in a “plug-in” format such that one cartridge may be removed from the apparatus and another cartridge may be easily installed. The cartridge support includes a plurality of cartridge positions that receive cartridges concurrently. One of the cartridges is a wavelength-tunable cartridge in which different light sources, excitation filters, and/or emission filters may be selected. Tuning is further accomplished by tilting the excitation or emission filters at desired angles relative to a beam of exciting light or emitted light.
Abstract:
The present disclosure is directed to imaging device, systems, and methods for collecting optical data for use with spectrometers. An imaging device configured in accordance with one aspect of the disclosure includes a lens configured to introduce light into the imaging device along an optical path, and an image sensor spaced apart from the lens and configured to receive at least a portion of the light along the optical path. The imaging device further includes a filter assembly positioned between the lens and the image sensor, and a reflector or mirror carried by the filter assembly. The filter assembly is configured to move the reflector between first and second positions. In the first position the reflector is at least partially aligned with the optical path and reflects at least a portion of the light to a corresponding light input for a spectrometer. In the second position the reflector is positioned outside of the optical path.
Abstract:
An electro-optical system for the carrying out of radiometric measurements of luminous sources comprises an instrument equipped with: a sensor comprising a pixel matrix, an optical system for creating the image of an external luminous source on the sensitive surface of the sensor, an optical bandpass filter, interposed between the sensor and the external luminous source for separating the spectrum of radiation emitted by the external luminous source into two portions: the first portion having a relatively limited bandwidth is transmitted toward the sensor while the second does not reach the sensor; moreover, the system comprises a computer which, starting from the plurality of monochromatic images recorded from the sensor, allows the calculating both of the angular distribution of the incident luminous radiation on the instrument and the irradiance on the normal plane in the direction from which the luminous radiation originates.
Abstract:
An image capture device includes an imaging assembly having a spectral sensitivity tunable in accordance with a spectral capture mask. A pre-capture captures a sample image of a scene using the imaging assembly tuned by a first spectral capture mask. A second spectral capture mask is constructed by calculations which use image data of the sample image. The second spectral capture mask is constructed to tune the spectral sensitivity of the imaging assembly so as to adjust respective capture parameters for different objects in the scene. The second spectral capture mask is applied to the imaging assembly. An image of the scene is captured with the second spectral capture mask applied to the imaging assembly.
Abstract:
Hyperspectral imaging systems that may be used for imaging objects in three-dimensions with no moving parts are disclosed. A lenslet array and/or a pinhole array may be used to reimage and divide the field of view into multiple channels. The multiple channels are dispersed into multiple spectral signatures and observed on a two-dimensional focal plane array in real time. The entire hyperspectral datacube is collected simultaneously.
Abstract:
A Raman optical method and apparatus is utilized to automatically and accurately recognize laser power measurements made at a desired illumination sample plane. From such a configuration, the methods and systems disclosed herein, enable the support of multiple optical wavelengths coupled with essential components, such as, but not limited to, filters, objectives, reflectors, etc., to provide the capability of displaying and controlling the optical power at the desired sample plane through storage of power calibration factors that are associated with such components. In particular, the system utilized herein, can recognize the installation of components and recalls stored calibration factors that are associated with such components to ensure an accurate power measurement at the illuminated sample plane.