Abstract:
Weak signals scattered from analytes at multiple wavelengths can be summed to illuminate either a single detector or a multiplicity of detectors, offering the possibility of concentrating the spectral energy on a smaller total detector area. In addition, a method is disclosed whereby a calibration of the resulting signal for a given analyte can be obtained by means of measuring the quantity of water in the sample volume and by means of measuring the salinity of the fluid in the sample volume.
Abstract:
This invention relates to a colour separator and the use of this in a projector, especially for video projectors, comprising a surface adapted to be moved through a light beam to be separated, the surface comprising a diffractive/holographic (DOE) optical element capable of directing different wavelengths comprised in the light beam toward different parts of a predetermined area. The diffractive optical element being essentially continues along one direction on the surface moved through the light beam and that direction of the separated colours depending on the position along the surface so as to provide a scanning of colours over each part of the predetermined area depending on the illuminated part of the diffractive surface
Abstract:
The present invention relates to an analyzer (10) for determining the concentration of substances, such as chemicals, present in a fluid medium, such as gas, vapor, or liquid, using holographic optics (22a, 22b) is disclosed. The analyzer (10) of the present invention is based on the infrared absorbance of the gas or vapor to be measured, where the optical functions of an infrared absorbance gas analyzer (10) are performed by holographic functional representations of the required optical components.
Abstract:
This invention relates to a dispersive holographic spectrometer (12) for analyzing radiation from an infrared source (16). The holographic spectrometer (12) comprises a piezoelectric block (40) having a holographic lens (38) on one face, an array of detectors (36) on another face and a pair of vernier electrodes (32, 34) on opposite faces. Radiation from the source (16) incident upon the holographic lens (38) is dispersed into component wavelengths (44, 46) and directed towards the detector array (36). The holographic lens (38) has a holographic interference pattern recorded on it such that radiation of predetermined wavelength components are dispersed sufficiently enough such that radiation of specific wavelengths falls on different detector elements (48) of the detector array (36). By applying a voltage to the electrodes (32, 38), an electric field is created within the piezoelectric block (40) such that it is either compressed or expanded. This change in the piezoelectric block (40) alters the direction of the radiation from the holographic lens (38) to the detector array (36). Therefore, misalignment of the source (16) with the holographic lens (38) can be compensated for such that piezoelectric adjustment of the block (40) will make the radiation of individual wavelengths fall on the desired detector element (48). Further, radiation from different wavelengths can be directed from one detector element to another. The detector array (36) is self-scanning such that an absorption spectrum can be measured and recorded over a range of frequencies.
Abstract:
Es ist hierbei vorgesehen, eine Bestimmung von Inhaltsstoffen, insbesondere aromatischen Kohlenwasserstoffen, in flüssigen Medien über optische Meßelemente mit elektromagnetischer Strahlung durch Lichtübertragung vorzusehen. Dieses erfolgt über die Verwendung einer Anregungseinheit zur Erzeugung und Einstellung einer variabel definierbaren elektromagnetischen Strahlung, die in einen Inline-Meßkopf eingebracht wird und die Veränderungen über eine Empfängereinheit mit Detektoren erfaßbar sind. Die Steuerung der optischen Messungen, die Auswertung und erforderliche Anpassung werden über eine Rechnereinheit vorgenommen.
Abstract:
Le polychromateur à champ plan comprenant une fente d'entrée fixe de milieu (A), un réseau holographique concave fixe (G) de centre de courbure sagittale (O2), un détecteur à champ plan (D) est caractérisé en ce que le milieu (A) de la fente d'entrée, le centre de courbure sagittale (O2) et le milieu du détecteur plan (D) sont respectivement disposés pour supprimer l'astigmatisme sur une même droite (S) située dans le plan perpendiculaire à la direction des traits du réseau (G) et passant par le centre de courbure sagitalle (O2).
Abstract:
A reflectometer (10) for measuring absorption of light in selected regions of the light spectrum by a diffuse reflector. The reflectometer (10) is adapted to precisely measure absorption resulting from the constituents present in body fluids. The sample (30) to be measured is illuminated by a focused light source (120) at an angle of 45° to its surface. The light diffusely reflected about the normal to the sample (30) falls on a small round bundle (200), the fibers are arranged into a narrow rectangle. This rectangle forms the entrance slit (230) for a concave holographic diffraction grating (230) spectrally separated over a flat field suitable for recording the spectrum on film or on an array of discrete detectors.