Abstract:
Aspects of inventive concepts described herein relate to an interferometric reflectance imaging system. The system can include an imaging sensor including pixels that are preferentially sensitive to a plurality of light components; an illumination source configured to emit illumination light along an illumination path, the illumination light including the plurality of light components; and a target including a target substrate configured to support one or more nanoparticles on a surface of the target substrate. The system may be configured to, at a nominal focus position: generate an image at the imaging sensor based, at least in part, on the light reflected from the target interfering with light scattered from nanoparticles on the target substrate; and process the image to detect the nanoparticles on the target substrate.
Abstract:
A determination device includes an irradiator, an extractor, an imager, and a determiner, The irradiator irradiates an object including a food or a plant with a light. The extractor extracts a predetermined fluorescence emission having a predetermined wavelength out of fluorescence emissions generated from a surface of the object irradiated with the light. The imager captures a fluorescence image indicating the predetermined fluorescence emission. The determiner determines a state of the object based on an index indicating a fluorescence intensity of the fluorescence image.
Abstract:
An inspection system and a method for analyzing defects in a product, in particular a printed circuit board product, a semiconductor wafer or the like, the inspection system includes a projection device , an optical detection device , and a processing device, the projection device having an illuminating unit and a spectrometer member configured to split white light into its spectral components and project a multichromatic light beam thus formed from monochromatic light beams onto a product at an angle of incidence β, the optical detection device having a detection unit comprising a camera and an objective , the camera being configured to detect the multichromatic light beam reflected on the product in a detection plane of the detection unit, the detection plane being perpendicular, preferably orthogonal, to a product surface of the product, the illuminating unit having at least two light-emitting diodes disposed in a row and an exit aperture extending along the row.
Abstract:
A device for optical detection of analytes in a sample includes at least two optoelectronic components. The optoelectronic components include at least one optical detector configured to receive a photon and at least one optical emitter configured to emit a photon. The at least one optical emitter includes at least three optical emitters disposed in a flat, non-linear arrangement, and the at least one optical detector includes at least three optical detectors disposed in a flat, non-linear arrangement. The at least three optical emitters and the at least three optical detectors include at least three different wavelength characteristics.
Abstract:
Systems and methods for driving optical sources operating at different wavelengths within a smoke sensor are described herein. Multiple optical sources such as light emitting diodes may be used in a photoelectric smoke sensor to detect particles of different sizes. Photoelectric smoke sensors can operate by pulsing the LEDs and measuring a response in a light sensor. The signal measured at the light sensor changes based on the quantity of particles existing in a smoke chamber. Each optical source may have different operational characteristics and thus require different drive currents to operate. LED driving circuitry according to embodiments discussed herein provide a consistent and reliable drive current to each optical source, while maximizing efficiency of power consumption across a range of possible voltages provided by different power sources.
Abstract:
Light emitted from a light casting unit 1 including an LED as its light source is cast into a sample cell 2, and a photodetector 3 is placed at a position where the resultant passing light can be detected. The LED is driven to blink, and a data extracting section 71 extracts data obtained in a period in which the LED is turned on, as data (absorbance data) in which absorption of light by the sample solution is reflected. Moreover, in the case where a fluorescent component is contained in the sample solution, fluorescent light is emitted by the cast light serving as excitation light. Even after the excitation light ceases, the emission of the fluorescent light continues for a short time, and hence the data extracting section 71 extracts data obtained immediately after the LED is turned off, as data (fluorescence data) in which the fluorescent light is reflected. An absorbance computing section 72 calculates absorbance based on the absorbance data, and a fluorescence computing section 73 calculates fluorescence intensity based on the fluorescence data. Accordingly, it is possible to simultaneously perform an absorbance measurement and a fluorescence measurement on one sample while using one photodetector and thus simplifying the configuration of an optical system.
Abstract:
A device and method for identifying solid and liquid materials use near-infrared transmission spectroscopy combined with multivariate calibration methods for analysis of the spectral data. Near-infrared transmission spectroscopy is employed within either the 700-1100 nm or the 900-1700 nm wavelength range to identify solid or liquid materials and determine whether they match specific known materials. Uses include identifying solid (including powdered) and liquid materials with a fast measurement cycle time of about 2 to 15 seconds and with a method that requires no sample preparation, as well as quantitative analysis to determine the concentration of one or more chemical components in a solid or liquid sample that consists of a mixture of components. A primary application of such analysis includes detection of counterfeit drug tablets, capsules and liquid medications.
Abstract:
An isothermal reaction and analysis system may include a receiver to receive sample holders, a thermal control subsystem to control a temperature of the receiver, an excitation subsystem, a detection subsystem and an analysis subsystem. Excitation sources and/or detectors are positioned to enhance data collection. Sample holders may include filters, selectively blocking and passing wavelengths or bands of electromagnetic radiation.
Abstract:
The invention relates to a method and an apparatus for detecting leaded pieces of glass in a single-layer material flow of objects composed predominantly of waste glass, with the objects being irradiated with substantially monochromatic UV light (3) and the fluorescent light resulting therefrom being detected.It is provided therein that the object is additionally irradiated with visible or infrared light (4); the transmission light of the visible or infrared light (4) is detected after the passage through the object; and an object is defined as containing lead if both the fluorescent light for at least one predetermined wavelength range corresponding to the fluorescence of leaded glasses is present in a predetermined intensity range and also transmission light in a predetermined intensity range with an intensity of larger zero.
Abstract:
An apparatus for detecting defects of elements to be subjected to examination, particularly metallic lids, with means for lighting an element to be subjected to examination, an image acquisition unit, and a unit for processing images acquired by said image acquisition unit is described.