Abstract:
An illumination system for recognizing material includes a measurement stage, a light-providing part, a light-receiving part, and a processing part. The measurement stage is upwardly open and the measurement target is located on the measurement stage. The light-providing part includes a plurality of illumination sections providing incident lights to the measurement target, and provides multi-directional incident lights to the measurement target from multiple upper directions at which the measurement stage is open. The light-receiving part receives single-directional reflection lights reflected by the measurement target according to the multi-directional incident lights provided by the light-providing part. The processing part acquires a multi-directional intensity distribution of multi-directional reflection lights reflected by the measurement target according to a single-directional incident light from the single-directional reflection lights reflected by the measurement target according to the multi-directional incident lights, and determines material of the measurement target from the multi-directional intensity distribution of reflection lights. Thus, material of an object may be easily and accurately known at a low cost.
Abstract:
A cylindrical optical tomography system includes a light emitting array having a plurality of light emitting elements, a cylindrical sample holding element, and a light sensing array including a plurality of light sensing elements, wherein the light sensing array is configured to sense light emitted from the light emitting array which has passed through the sample holding module.
Abstract:
An imaging system for generating images of biological samples having a surface, the system comprising: a sample support for supporting a biological sample in use; a plurality of illumination sources, the plurality of illumination sources being arranged around the sample support and each adapted to illuminate the biological sample, in use, from a different direction; an image capture device for capturing illumination which has impinged on the biological sample to thereby form an image of the sample; wherein at least one of the illumination sources direction is not perpendicular to the surface of the sample.
Abstract:
A light guide member for an object detection apparatus for detecting an object adhered on a light translucent member based on change of quantity of reflection light received from the light translucent member includes a detection face where light exits to the light translucent member and reflection light reflected from the light translucent member enters, the detection face including a detection area where a part of the reflection light to enter the detection unit passes through, and a non-detection area where remaining part of the reflection light not to enter the detection unit passes through; a first intervening member disposed on the detection face attachable to the light translucent member via the first intervening member; and a second intervening member disposed on the detection face attachable to the light translucent member via the second intervening member. The first intervening member has flexibility greater than flexibility of the second intervening member.
Abstract:
A light guide member for an object detection apparatus is devised. The object detection apparatus includes a light source unit, and a detection unit for detecting an object adhered on a surface of a light translucent member based on change of light quantity of reflection light received from the light translucent member. The light guide member includes an incident face where the light exiting from the light source unit enters; a detection face where the exiting light exits to a rear face of the light translucent member and the reflection light reflected from the light translucent member enters; an exiting face where the reflection light exits to the detection unit; and a light guiding portion through which the exiting light and the reflection light proceed. The detection face has curvature corresponding to curvature of the light translucent member.
Abstract:
A blood purification apparatus includes a blood purification instrument for extracorporeally circulating blood of a patient and a concentration detector detecting a concentration of liquid flowing during blood purification. The concentration detector has a light emitter irradiating light onto said liquid, a light receiver receiving light from the light emitter transmitted through said liquid, and a detector detecting the received light intensity received by the light receiver. The concentration detector detects the concentration of the liquid based on the received light intensity and can be calibrated by adjusting an amount of irradiation by the light emitter so that the received light intensity has a predetermined value.
Abstract:
A planar sample, particularly of the type used in biological laboratories for detection and sometimes analysis of two-dimensional arrays of proteins, nucleic acids, or other biological species, is illuminated by epi-illumination using optically filtered line lights that are arranged along opposing parallel sides of a rectangle in which the sample array resides, with two coaxial line lights on each side of the rectangle, and the two on any given side being separated by a gap whose optimal width depends on the wavelength band transmitted by the optical filter. Surprisingly, the gap eliminates the peak in intensity at the center of the sample area and the decrease that occurs from the center outward that would otherwise occur with a single continuous filtered line light, producing instead a substantially uniform intensity along the direction parallel to the line lights.
Abstract:
A multi-channel arrayed isosbestic wavelength detection system comprises an arrayed light source board, an arrayed photoelectric sensor board, and an intermediate system frame. The arrayed light source board and arrayed photoelectric sensor board are assembled at opposite sides of the intermediate system frame. In addition, the arrayed light source system has a plurality of light-emitting elements, each of which comprises two monochromatic light sources that provide main wavelength and reference wavelength respectively, and the two wavelengths are isosbestic wavelengths. The arrayed photoelectric sensor system has a plurality of photoelectric sensors, which are aligned at fixed positions in one-to-one correspondence with the light-emitting elements.
Abstract:
A blood purification apparatus includes a blood purification instrument for extracorporeally circulating blood of a patient and a concentration detector detecting a concentration of liquid flowing during blood purification. The concentration detector has a light emitter irradiating light onto said liquid, a light receiver receiving light from the light emitter transmitted through said liquid, and a detector detecting the received light intensity received by the light receiver. The concentration detector detects the concentration of the liquid based on the received light intensity and can be calibrated by adjusting an amount of irradiation by the light emitter so that the received light intensity has a predetermined value.