Abstract:
The invention relates to an optical instrument which is particularly suited for DNA PCR monitoring. The instrument comprises a plurality of spaced-apart reaction ingredient containers (1b), a light source (11) adapted to direct an excitation beam (22) toward the plurality of containers (1b), a Fresnel lens (3) disposed along an excitation beam path between the light source (11) and the plurality of containers (1b) and a detector (10) disposed along an excitation beam path and arranged to receive emission beams (26) emitted from the Fresnel lens (3) which is also disposed along an emission beam path between the plurality of containers (1b) and the detector (10).
Abstract:
A sensor (30), such as a lateral flow sensor, which includes a chemical layer (32) and a detector (36) on a flexible substrate (40). An optical signal is produced in response to an analyte (34) placed on the chemical layer. The detector detects the signal, to thereby detect the presence, absence or concentration of the analyte. The detector is on the substrate. The chemical layer and the substrate are laminated together, to thereby form an integrated sensor. The sensor can include a light source (42). The light source can be on the substrate, or on an opposite side of the chemical layer than the detector.
Abstract:
A microfabricated detection system, comprising: a substrate chip; a chamber defined by the substrate chip to which a fluid sample is in use delivered; and at least one detector comprising at least one light-emitting diode including an organic semiconductor element for emitting light into the chamber and at least one photocell including an organic semiconductor element for receiving light from the chamber.
Abstract:
Optical sensor, probe and array devices for detecting chemical, biological, and physical analytes. The devices include an analyte-sensitive layer (74) optically coupled to a thin film electroluminescent layer (70) which activates the analyte-sensitive layer to provide an optical response.
Abstract:
A method for real-time surface imperfection detection for additive manufacturing and 3-D printing parts is provided. The method includes directing a first light radiation using one or more illumination sources, wherein the first light radiation illuminates a target area of a part being manufactured in a uniform chromatic light such that the target area appears to have a substantially uniform monochromatic color; capturing a current image of a second light radiation that is scattered or reflected by the target area using one or more feedback cameras; and analyzing the current image of the second light radiation using at least one of the one or more feedback camera with a previously acquired image to determine whether a surface imperfection exists or does not exist.
Abstract:
An apparatus to detect optical flatness of an OLED display layer includes a light-emitting assembly, a light-receiving assembly, and an image processor. The light-emitting assembly includes a light source and a first enhancement element. The light source emits reference light through the first enhancement element. The first enhancement element enhances brightness of the reference light and guides the enhanced reference light to a display layer of a display device being detected. The light-receiving assembly receives light reflected by the display layer according to the reference light and generates an image thereof. The image processor receives the image and obtains a result of detection as to surface flatness of the display layer according to the image.
Abstract:
An instrument is provided that can monitor nucleic acid sequence amplification reactions, for example, PCR amplification of DNA and DNA fragments. The instrument includes a multi-notch filter disposed along one or both of an excitation beam path and an emission beam path. Methods are also provided for monitoring nucleic acid sequence amplifications using an instrument that includes a multi-notch filter disposed along a beam path.
Abstract:
A biosensing device, as well as methods of forming a biosensing device and detecting presence of a biofilm are disclosed. The biosensing device may include a substrate, at least one radiation source on the substrate, at least one radiation detector on the substrate, and at least one reflector arranged on the substrate such that radiation emitted from the at least one radiation source is reflected toward the at least one radiation detector. The at least one radiation detector may be configured to detect an intensity of the radiation reflected from the at least one reflector. A biofilm growth on a portion of the at least one reflector may cause a change in the intensity of the radiation reflected from the at least one reflector relative to radiation reflected from the reflector in the absence of the biofilm growth.
Abstract:
According to one embodiment, a sensor includes a light emitter and a light sensor. The light emitter includes a first electrode, a second electrode, and a first light emitting layer. The second electrode is light-transmissive. The first light emitting layer is provided between the first electrode and the second electrode. The light sensor includes a third electrode, a fourth electrode, a fifth electrode, a first photoelectric conversion layer, and a second photoelectric conversion layer. the fourth electrode is light-transmissive. The fifth electrode is provided between the third electrode and the fourth electrode. The fifth electrode is light-transmissive. The first photoelectric conversion layer is provided between the third electrode and the fifth electrode. The second photoelectric conversion layer is provided between the fourth electrode and the fifth electrode.
Abstract:
An optical instrument monitors PCR replication of DNA in a reaction apparatus having a temperature cycled block with vials of reaction ingredients including dye that fluoresces in presence of double-stranded DNA. A beam splitter passes an excitation beam to the vials to fluoresce the dye. An emission beam from the dye is passed by the beam splitter to a CCD detector from which a processor computes DNA concentration. A reference strip with a plurality of reference emitters emit reference beams of different intensity, from which the processor selects an optimum emitter for compensating for drift. Exposure time is automatically adjusted for keeping within optimum dynamic ranges of the CCD and processor. A module of the beam splitter and associated optical filters is associated with selected dye, and is replaceable for different dyes.