Abstract:
Apparatus for performing Raman spectroscopy may include a first laser source having a first emission wavelength and a second laser source having a second emission wavelength. A separation between the first and second emission wavelengths may correspond to a width of a Raman band of a substance of interest. An optical switch may provide switching between the first and second laser sources. An ensemble of individually addressable laser emitters may be provided. A Bragg grating element may receive laser light from the ensemble. An optical system may direct light from the Bragg grating element into an optical fiber. A combined beam through the optical fiber may contain light from each of the emitters.
Abstract:
A method for estimating surface moisture content of wood chips for use in a pulp and paper production process comprises measuring chip surface moisture using an infrared surface moisture sensor, and adjusting a calibration of the surface moisture measured with a model using values of a set of optical parameters representing light reflection characteristics of the wood chips, to estimate their surface moisture content.
Abstract:
A system is provided to monitor targeted pest populations, disease, presence of transgenic and non-transgenic plants, or targeted pest population in a transgenic crop using remote imagery to discern differences in crops along with pest infestation in all crop varieties. The system relies on the fact that plant leaves are known to change color based on stress, herbivory, and other environmental factors. The system provides a special camera that can see reflected light energy across the visible and near infrared (about 400-1000 nm) to identify these effects.
Abstract:
A method for predicting water clarity at a plurality of water depths for a location including providing training data to a neural network, the training data representative of water measurements at the location, thereafter receiving inputs including temperature, salinity, tidal information, water depth, and sediment data, and generating values for optical attenuation at a wavelength at a plurality of depths. In one embodiment, a default cloudy day algorithm operates at all times and a clear sky algorithm operates only when clear satellite images are available.
Abstract:
The present invention is directed to methods and apparatus for pest management using remote sensing technology. One aspect of the present invention relates to a method for detecting plant-parasitic nematodes using hyperspectral reflectance data. Another aspect of the present invention relates to a device for determining the population of reniform nematode in a target. The further aspect of the present invention relates to a method for managing nematode population with variable rate applications of nematicides.
Abstract:
A distributed biohazard surveillance system including a plurality of robust miniaturized remote monitoring stations for the detection, localized analysis and reporting of a broad range of biohazards. The remote monitoring station may be adapted to identify many different biological particles and is not limited to particular predetermined biohazard profiles. It is centrally and dynamically reconfigurable and can be adapted to operate unattended in a remote location. The distributed system may be used to locate and report unsuspected sources of biohazards and to monitor the localized effects in real-time cooperation with a centralized data processing facility.
Abstract:
Real time biofilm monitoring systems are provided. Said systems comprise single or multiple fiber-optic probes detecting wavelength-specific fluorescence from biomarkers of fouling organisms; a compact optoelectronic interface and data acquisition system interfaced with said probes, wherein said probe or probes are bifurcated and contain at least one excitation and at least one emission filter permitting the simultaneous resolution of multiple biomarkers.
Abstract:
A method and apparatus for color matching are provided, in which paint recipe neural networks are utilized. The color of a standard is expressed as color values. The neural network includes an input layer having nodes for receiving input data related to paint bases. Weighted connections connect to the nodes of the input layer and have coefficients for weighting the input data. An output layer having nodes are either directly or indirectly connected to the weighted connections and generates output data related to color values. The data to the input layer and the data from the output layer are interrelated through the neural network's nonlinear relationship. The paint color matching neural network can be used for, but not limited to, color formula correction, matching from scratch, effect pigment identification, selection of targets for color tools, searching existing formulas for the closest match, identification of formula mistakes, development of color tolerances and enhancing conversion routines.
Abstract:
A method and apparatus for color matching are provided, in which paint recipe neural networks are utilized. The color of a standard is expressed as color values. The neural network includes an input layer having nodes for receiving input data related to paint bases. Weighted connections connect to the nodes of the input layer and have coefficients for weighting the input data. An output layer having nodes are either directly or indirectly connected to the weighted connections and generates output data related to color values. The data to the input layer and the data from the output layer are interrelated through the neural network's nonlinear relationship. The paint color matching neural network can be used for, but not limited to, color formula correction, matching from scratch, effect pigment identification, selection of targets for color tools, searching existing formulas for the closest match, identification of formula mistakes, development of color tolerances and enhancing conversion routines.
Abstract:
Systems and methods using a spectrometer system for real-time automatic evaluation of tissue injury are described. A method of assessing an injury to tissue comprises reflecting an electromagnetic signal from the tissue to produce a reflected electromagnetic signal; producing spectral data pertaining to the intensities of individual wavelengths of the reflected electromagnetic signal; analyzing the spectral data to obtain a set of results; and providing an indication of the nature of the injury to the tissue based upon the set of results.