Abstract:
An end face 7a of an optical fiber 7 and an end face 8a of an optical fiber 8 are arranged so as to have a predetermined interval and to oppose each other in a V-groove 23 of a base 21. A solution 27 including particles used as a material of the photonic crystal is dropped into a space section 25 which is formed by the end face 7a, the end face 8a, and the V-groove 23. Accordingly, by growing the photonic crystal from each of the end face 7a and the end face 8a, the optical control section including the photonic crystal 2 is formed on each of the end face 7a and the end face 8a.
Abstract:
A wavelength converter which employs an optical fiber and has high converter efficiency. The polarization planes of a signal light and an exciting light outputted from a laser diode (LD) (103) are respectively controlled by polarization controllers (PC's) (101 and 104) and the phases of the lights are respectively modulated by phase modulators (PM's) (102 and 105) in accordance with modulation signals outputted from an oscillator (110). Then, the output lights from the PM's (102 and 105) are multiplexed by a coupler (106). After the multiplexed signal light and exciting light are amplified by an optical amplifier (EDFA) (107), they are inputted to a dispersion shift fiber (DSP) (108). After wavelength transformation (four light waves mixing (FWM)) is practiced in the DSP, an FWM light is outputted through a band-pass filter (BPF) (109).
Abstract:
Passive, self-adjusting and tracking optical wavelength filters 20 are described. The filters are absorptive and can be of either transmissive or reflective type. The filters comprise an unpumped doped optical waveguide configured so that signals of different wavelength are spatially decoupled to some extent. The self-adjustment of the filter centre wavelength is achieved by the combined effects of the power-dependent saturable absorption, provided by an appropriate dopant, and partial longitudinal hole burning provided by the spatial decoupling of the different wavelengths. External cavity lasers using this type of filter in the external cavity are also described. This external cavity configuration can provide stable single frequency operation of, for example, a semiconductor laser. By using a saturable absorber for the external cavity (e.g. an erbium doped fibre), longitudinal mode-hopping can be suppressed, ensuring single frequency operation.
Abstract:
This invention discloses an optical waveguide having a hybrid core. A first waveguide (41) having a glass core is coupled to a polymer waveguide (42) disposed adjacent and parallel thereto. The refractive index of the polymer is varied by applying heat to the region. In the absence of applied heat the device acts as an MMI coupler and when heat is applied, the refractive index difference of the glass and the polymer increases yielding a suppressed MMI. By the application of sufficient heat, the refractive index of the polymer can approach the cladding, the device acts as a simple glass waveguide. Other embodiments disclose the application of a voltage to an EO polymer or physically compressing a polymer region to effect a refractive index change within the polymer.
Abstract:
The present invention relates to a variable optical filter that can be used to filter an incoming signal, attenuate an incoming signal or in one configuration switch an incoming signal from one path to another. The present invention has found that an accurate and economical variable optical filter can be created by using an elastomeric material having a high coefficient of expansion in cooperation with a means for locally varying the temperature of the elastomeric material as an actuator for moving a reflective surface within the optical filter. The actuator can be operated in a controlled manner for example, to effect a tilt of the reflective surface for switching or attenuating an optical signal, or to vary the resonant wavelengths of a resonant cavity between partially reflective surfaces. In accordance with the invention there is provided, a variable optical filter comprising an input port and an output port; a first at least partially reflective surface disposed to receive a beam of light launched from the input port; an elastomeric material for supporting and varying the position of the at least partially reflective surface with respect to the input port; a heater for applying variable amounts of heat to the elastomeric material to move or pivot the at least partially reflective surface relative to the input port; and, control means for controlling the heater and for providing a signal to apply variable amounts of heat.
Abstract:
Insbesondere für optische Überlagerungsempfänger ist es notwendig, die Polarisation des lokal erzeugten Lichtes der des Empfangslichtes nachzuregeln. Die Polarisationsregelung erfolgt dabei durch Verstellung der Verzögerung doppelbrechender Elemente, die nach einer Anzahl gleichgerichteter Verstellschritte an eine Verstellgrenze gelangen können und zurückgestellt werden müssen. Dabei ergibt sich das Problem, daß schnelle Änderungen der Polarisation des Eingangslichtes auch während Rückstellphase berücksichtigt werden müssen, außerdem sollten auch nichtideale doppelbrechende Elemente verwendet werden. Erfindungsgemäß werden vier doppelbrechende Elemente verwendet, von denen die im Lichtweg ersten beiden Elemente der normalen Regelung und die beiden folgenden Elemente der Regelung während der Rückstellprozedur dienen.
Abstract:
A supercontinuum optical pulse source provides a combined supercontinuum. The supercontinuum optical pulse source comprises one or more seed pulse sources (13), and first and second optical amplifiers (7) arranged along first and second respective optical paths. The first and second optical amplifiers are configured to amplify one or more optical signals generated by said one or more seed pulse sources. The supercontinuum optical pulse source further comprises a first microstructured light-guiding member (9) arranged along the first optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said first optical path, and a second microstructured light-guiding member (9) arranged along the second optical path and configured to generate supercontinuum light responsive to an optical signal propagating along said second optical path. The supercontinuum optical pulse source further comprises a supercontinuum-combining member (5) to combine supercontinuum generated in at least the first and second microstructured light-guiding members to form a combined supercontinuum. The supercontinuum-combining member comprises an output fibre, wherein the output fibre comprises a silica-based multimode optical fibre supporting a plurality of spatial modes at one or more wavelengths of the combined supercontinuum.
Abstract:
Embodiments of the present invention generally relate to optical mode conversion by nonlinear effects. More specifically, embodiments of the present invention relate to nonlinear mode conversion utilizing intermodal four-wave mixing to convert light between modes having different wavelengths for complex applications. In one embodiment of the present invention, a fiber comprises an input end for receiving light in a first mode at a first wavelength, and an output end for outputting light in a desired second mode at a desired second wavelength, wherein the first wavelength and the second wavelength are not the same. In many embodiments, the fiber comprises a higher-order mode fiber.