Abstract:
In some embodiments, an apparatus includes a substantially rigid base and a flexible substrate. The substantially rigid base has a first protrusion and a second protrusion, and is configured to be coupled to an electronic device. The flexible substrate has a first surface and a second surface, and includes an electrical circuit configured to electronically couple the electronic device to at least one of an electrode a battery, or an antenna. The flexible substrate is coupled to the base such that a first portion of the second surface is in contact with the first protrusion. A second portion of the second surface is non-parallel to the first portion.
Abstract:
A body weight support system includes a trolley, a powered conductor operative coupled to a power supply, and a patient attachment mechanism. The trolley can include a drive system, a control system, and a patient support system. The drive system is movably coupled to a support rail. At least a portion of the control system is physically and electrically coupled to the powered conductor. The patient support mechanism is at least temporarily coupled to the patient attachment mechanism. The control system can control at least a portion of the patient support mechanism based at least in part on a force applied to the patient attachment mechanism.
Abstract:
An apparatus includes a percutaneous connection port configured to convey an electrical signal between an electrical device disposed outside of a body and an electrical member disposed within the body. The percutaneous connection port has a distal portion and a proximal portion. The proximal portion includes a surface configured to be accessible from a region of the body. The distal portion includes an anchor configured to be disposed within the body. The anchor has a curved shape about an axis substantially parallel to a skin of the body.
Abstract:
A body weight support system includes a trolley, a powered conductor operative coupled to a power supply, and a patient attachment mechanism. The trolley can include a drive system, a control system, and a patient support system. The drive system is movably coupled to a support rail. At least a portion of the control system is physically and electrically coupled to the powered conductor. The patient support mechanism is at least temporarily coupled to the patient attachment mechanism. The control system can control at least a portion of the patient support mechanism based at least in part on a force applied to the patient attachment mechanism.
Abstract:
An apparatus includes a drive mechanism, a patient support mechanism, and an electronic system. The drive mechanism is included in a trolley and is configured to suspend the trolley from a support track. The drive mechanism includes a first sensor configured to sense an operating condition of the drive mechanism. The patient support mechanism couples to the trolley and includes a tether and a second sensor. The tether can be operatively coupled to a patient such that the patient support mechanism supports the patient. The second sensor is configured to sense an operating condition of the patient support mechanism. The electronic system is included in the trolley and has at least a processor and a memory. The processor is configured to define a gait characteristic of the patient based at least in part on a signal received from the first sensor and a signal received from the second sensor.
Abstract:
A body weight support system includes a trolley, a powered conductor operative coupled to a power supply, and a patient attachment mechanism. The trolley can include a drive system, a control system, and a patient support system. The drive system is movably coupled to a support rail. At least a portion of the control system is physically and electrically coupled to the powered conductor. The patient support mechanism is at least temporarily coupled to the patient attachment mechanism. The control system can control at least a portion of the patient support mechanism based at least in part on a force applied to the patient attachment mechanism.
Abstract:
An apparatus and method for an electrical stimulation lead having a selectively variable length. In an embodiment of the invention, an apparatus includes a conducting element, a stimulating electrode, a pickup electrode and a sheath. The conductive element has a proximal end, a distal end and a length which is defined between the proximal and distal ends. The stimulating electrode is coupled to the distal end of the conductive element and the pickup electrode is coupled to the proximal end of the conductive element. The sheath of the apparatus is configured to enclose at least a portion of the conductive element. The sheath has a reconfigurable portion that is able to move between a first configuration and a second configuration. The sheath has a first length when in the first configuration and a second length when in the second configuration.