Abstract:
본 발명은 탄화수소와 이산화탄소의 내부개질반응(Internal Reforming)용 고체산화물 연료전지에 관한 것으로서, 더욱 상세하게는 고체 산화물 전해질(YSZ)의 한쪽 면에 공기극(La 0.8 Sr 0.2 MnO 3 )이 부착되어 있고, 다른 한쪽 면에는 Ni-YSZ계 또는 페롭스카이트계 금속 산화물의 촉매전극(anode)이 부착되어 있는 고체산화물 연료전지로서, 전기화학적 전환반응시스템에 적용되어서는 상기 촉매전극(anode) 내부에서 탄화수소와 이산화탄소의 내부개질반응이 진행되고 동시에 전기화학적 전환반응에 의해 합성가스(syngas)와 전기에너지(electricity)를 동시에 생성시키게 되며, 특히, 탄소침적 현상이 억제되어 탄소침적에 의한 촉매의 비활성화 및 고에너지 소모의 문제점을 동시에 해결할 수 있는 장점을 가지고 있다. SOFC, 촉매전극, 공기극, 고체산화물 전해질, 합성가스, 전기에너지, 이산화탄소, 탄화수소, 내부개질반응, 전기화학적 전환반응시스템
Abstract:
본 발명은 연료전지 자동차에 이용되는 가솔린 개질용 저압차 촉매(structured catalyst)와 이의 제조방법에 관한 것으로서, 더욱 상세하게는 세라믹 하니콤 담체의 표면을 서브마이크론의 알루미나 또는 이의 전구체로 워시코팅하여 촉매의 유효 표면적과 담지량을 충분히 확대시킨 후에 전이금속계 촉매분말을 담지시켜 제조하는 연료전지 자동차의 가솔린 개질용 저압차 촉매와 이의 제조방법에 관한 것이다. 가솔린 개질기, 이소옥탄, γ-알루미나, 어트리션밀(Attrition mill), 자열 개질반응, POX 개질, 세라믹 하니콤, 저압차 촉매(structured catalyst), 워시코팅
Abstract:
PURPOSE: A method for co-preparation of tetrafluoroethylene(TFE) and hexafluoropropylene(HFP) is provided to obtain both monomers(TFE and HFP) useful in the fluororesin industries with high efficiency and high selectivity of HFP. CONSTITUTION: The method comprises the steps of: performing pyrolysis of difluorochloromethane(R22) pre-heated to 150-250 deg.C with overheated water steam at a temperature of 730-760 deg.C for 0.01-0.2 sec; and recycling the mixture of unreacted R22 and HFP, which is discharged after the pyrolysis, into the pyrolysis reactor(31), wherein the mole ratio of overheated water steam to R22, i.e., £H2O|/£R22|, and the mole ratio of HFP to R22, i.e., £HFP|/£R22|, at the inlet of the pyrolysis reactor, are controlled to 5-10 and 0.01-0.1, respectively.
Abstract translation:目的:提供四氟乙烯(TFE)和六氟丙烯(HFP)的共制备方法,以获得两种单体(TFE和HFP),其可用于高效率和高选择性的HFP的氟树脂工业中。 方法:该方法包括以下步骤:用730〜760℃的过热水蒸气预热至150-250℃的二氟氯甲烷(R22),进行0.01-0.2秒的热解; 并将在热解后排出的未反应的R22和HFP的混合物再循环到热解反应器(31)中,其中过热的水蒸汽与R22的摩尔比(即,H 2 O 2 | / R 22 |)和摩尔比 的HFP到R22,即在热解反应器入口处的HFP | /£R22 |分别被控制在5-10和0.01-0.1。
Abstract:
본 발명은 트리플루오로메탄(CHF 3 , 이하 'R23'이라 함)과 테트라플루오로에틸렌(C 2 F 4 ,이하 'TFE'라 함)의 열분해 반응에 의한 헥사플루오로프로필렌(CF 3 CF=CF 2 , 이하 'HFP'라 함)의 제조방법에 관한 것으로서, 더욱 상세하게는 R23의 열분해 반응을 컴퓨터 모사를 통해 예측한 후 적정비율의 R23과 TFE의 혼합물을 반응기에 공급하고 종래보다 낮은 900 ℃미만의 반응온도에서 접촉시간을 증가시켜 동시에 열분해 반응시킴으로써, R23의 흡열 열분해반응과 TFE의 발열 이량화반응에 따른 열균형(heat balance)으로 반응온도 조절의 문제점을 개선하여 탄화를 방지할 수 있을 뿐만 아니라, 반응 생성물 중 미반응 R23과 TFE를 증류탑에서 분리 정제한 후 반응기에 재공급하고, 적정비율의 R23/TFE 혼합비가 유지되도록 순수한 R23을 추가로 공급하여 HFP의 수율을 증가시키면� � 외부로부터의 열공급을 최소화함으로써, 불필요한 에너지를 절약할 수 있는 헥사플루오로프로필렌(HFP)의 제조방법에 관한 것이다.
Abstract:
PURPOSE: A method for preparing octafluorocyclobutane is provided, to inhibit the production of solid polymer and carbon by preventing the partial overheating due to the exothermic reaction during dimerization of tetrafluoroethylene, thereby improving the production yield and the stability. CONSTITUTION: The method comprises the step of supplying tetrafluoroethylene prepared by the pyrolysis of difluorochloromethane and H2O in the molar ratio of 0.1-10 into a flow layer reactor, to allow the dimerization of tetrafluoroethylene to be carried out. Preferably the flow layer reactor(13) is provided with a nozzle supplying steam. Tetrafluoroethylene is prepared at the difluorochloromethane pyrolysis device comprising a preheater(2), a super heating unit(4), a cooler and a tetrafluoroethylene distillation tower(12); is purified at the distillation tower after passing a HCl absorption tower(8), a NaOH neutralization tower(9) and a dryer(10); and is supplied into the flow layer reactor from the center of the distillation tower. Preferably the reaction temperature is 550-700 deg.C, and the reaction contact time is 1-30 sec.
Abstract:
PURPOSE: Provided is a method for preparing hexafluoropropylene by pyrolysis of trifluoromethane and tetrafluoroethylene, which can maximize a yield of the hexafluoropropylene. CONSTITUTION: The method is characterized in that mixture of trifluoromethane and tetrafluoroethylene having a molar ratio of 0.25-10 at inlet of reactor is simultaneously reacted under pyrolysis of trifluoromethane maintaining a reaction temperature of 750-950 deg.C and a contact time of reactor of 0.1-5 seconds and purifying system. The method can increase a yield of the hexafluoropropylene and save an unnecessary energy.
Abstract:
본 발명은 제 1 성분으로 디플루오로메탄(CH 3 F 2 , HFC-32), 제 2 성분으로 1,1,1-트리플루오로에탄(CH 3 CF 3 , HFC-143a)를 포함하고, 제 3 성분으로 사이클로프로판(C 3 H 6 , RC-270), 1,1,1,2,3,3,3-헵타플루오로프로판(CF 3 CHFCF 3 , HFC-227ea), 1,1,1,2,2-펜타플루오로프로판(CH 3 CF 2 CF 3 , HFC-245cb), 1,1,1,2,3,3-헥사플루오로프로판(CHF 2 CHFCF 3 , HFC-236ea), 부탄(C 4 H 10 , R-600), 비스(디플루오로메틸)에테르(CHF 2 OCHF 2 , HFE-134) 및 펜타플루오로에틸메틸에테르(CF 3 CF 2 OCH 3 , HFE-245)로 이루어진 군 중에서 선택된 어느 한 성분으로 이루어진 HCFC-22 대체용 냉매 혼합물을 제공한다.
Abstract:
The catalyst is manufactured by (a) adding ethanol to the mixture of CrO3, CeCl3 and water; (b) obtaining hydrated CeCl3-Cr2O3 by reflux reaction above 90 deg.C; (c) drying under 100-140 deg.C; (d) forming under 360-380 deg.C for 3-6 hrs. Another method is to (a) obtain Cr2O3 sediment from the reaction of CrO3 and ethanol; (b) dry and form; (c) add CeCl3. The catalyst shows better activity at lower temp. than established catalyst. For example, the conversion rate of hydrogen chloride is 75-85% at reaction temp. 360-380 deg.C. in case of using this catalyst.