Abstract:
Techniques for signaling carrier bandwidths supported by a user equipment (UE) for carrier aggregation are disclosed. A UE may be configured with a plurality of carriers for carrier aggregation. Each carrier may have one carrier bandwidth of a set of possible carrier bandwidths. The set of possible carrier bandwidths may be dependent on a band in which the carrier belongs. Multiple combinations of carrier bandwidths for the plurality of carriers may be possible. The UE may identify at least one supported carrier bandwidth combination for the plurality of carriers. Each of the supported carrier bandwidth combinations may include a particular carrier bandwidth for each configured carrier. The UE may send signaling indicative of the at least one supported carrier bandwidth combination. The UE may thereafter communicate on the plurality of carriers based on a carrier bandwidth combination selected from the supported carrier bandwidth combination(s).
Abstract:
Systems and methodologies are described that facilitate and/or effectuate transmission of circuit switched voice over packet switched networks. The systems and methodologies provide for the receiving a first packet originating from access terminals and/or user equipment, determining within which hybrid automatic repeat request (HARQ) the first packet is received, ascertaining an amount of delay that is applied to the first packet before the first packet is forwarded into a core circuit switched network; and establishing a periodic time interval within which to convey subsequent packets that originate from the communicating access terminal and/or user equipment.
Abstract:
An apparatus and method for optimizing feedback-based radio resource management (RRM) parameters comprising establishing a communication link in a serving cell within a network; performing at least one of the following: processing a plurality of measurements received to determine viability of the servicing cell and a neighboring cell, wherein the viability determination is associated with at least one RRM parameter configured by the network, analyzing an interaction between a user equipment and the network, wherein at least one RRM parameter associated with the interaction is configured by the network, or analyzing an internal procedure performed within the user equipment wherein at least one RRM parameter of the internal procedure is configured by the network; determining whether the at least one RRM parameter configured by the network should be changed; and using a transmit data processor for sending a feedback message to the network with a change recommendation.
Abstract:
A method for SRNS relocation comprises sending a relocation request from a Source Node B+ to a Target Node B+ based on measurements received from a User Equipment; sending a Physical Channel reconfiguration message from the Source Node B+ to the UE; forwarding packet Data Units (PDU) from the source Node B+ to the Target Node B+; and performing physical layer synchronization and radio link establishment with a target cell of the Target Node B+.