Abstract:
Es wird ein Kleinflugkörper mit einem Rumpf (Airframe), Mitteln zur Steuerung und einem Antrieb vorgeschlagen, bei dem im Rumpf ein Propeller-Elektroantrieb, eine Energieversorgung, eine TV-Kamera, eine Datenübertragungs- und Lenkelektronik sowie ein Gefechtskopf bzw. ein Wirksystem integriert und am Rumpf klapp-bzw. faltbare Flügel, Ruder und Propeller angeordnet sind. Der Kleinflugkörper kann für die Bekämpfung unterschiedlicher Ziele oder für unterschiedliche Missionen mit verschiedenen Wirksystemen bestückt werden.
Abstract:
An unmanned aerial vehicle (UAV) launch tube (100) that comprises at least one inner layer of prepreg substrate (370) disposed about a right parallelepiped aperture (305), at least one outer layer of prepreg substrate (380) disposed about the right parallelepiped aperture (305), and one or more structural panels (341-344) disposed between the at least one inner layer of prepreg substrate (340) and the at least one outer layer of prepreg substrate (380). An unmanned aerial vehicle (UAV) launch tube (100) that comprises a tethered sabot (700,740) configured to engage a UAV within a launcher volume defined by an inner wall, the tethered sabot (700,740) dimensioned to provide a pressure seal at the inner wall and tethered to the inner wall, and wherein the tethered sabot (700,740) is hollow having an open end oriented toward a high pressure volume and a tether (740) attached within a hollow (910) of the sabot (700) and attached to the inner wall retaining the high pressure volume or attach to the inner base wall (1013). A system comprising a communication node (1500-1505) and a launcher (1520) comprising an unmanned aerial vehicle (UAV) in a pre-launch state configured to receive and respond to command inputs from the communication node (1500-1505).
Abstract:
A VTOL aircraft includes at least one puller rotor and at least one pusher rotor. The VTOL aircraft, for example, may include three puller rotors and one pusher rotor. The combination of static puller and pusher rotors allows the rotors to remain in a fixed orientation (i.e., no moving mechanical axes are required) relative to the wings and fuselage of the VTOL aircraft, while being able to transition the aircraft from a substantially vertical flight path to a substantially horizontal flight path.
Abstract:
Disclosed is an apparatus for recording aircraft flight data. The apparatus comprises a primary flight data recorder unit for recording data generated by aircraft systems during operation of an aircraft and a secondary flight data recorder unit in communication with the primary flight data recorder unit. The secondary flight data recorder unit is configured to receive and store data from the primary flight data recorder. The secondary flight data recorder unit is ejectable from the aircraft, and comprises a propulsion system to enable powered flight of the secondary flight data recorder unit.
Abstract:
A solar powered aircraft having segmented wings that can be reconfigured during flight to optimize collection of solar energy are described. The aircraft have rigid construction that is resistant to inclement weather and is configured to rely on free flight control at high altitude and under conventional conditions, thereby providing flight duration in excess of 2 months. The aircraft is particularly suitable for use as part of a telecommunications network. A telecommunications network incorporating such aircraft is also discussed.
Abstract:
La présente invention concerne un Drone (1) comportant une structure porteuse (2), au moins trois rotors (3-6) de sustentation et de propulsion et un système de commande (7) pour délivrer au moins une alimentation en énergie électrique d'au moins trois moteurs électriques (8) entraînant en rotation respectivement lesdits au moins trois rotors (3-6), lesdits au moins trois rotors (3-6) étant espacés longitudinalement et transversalement les uns à côtés des autres, caractérisé en ce que ledit drone (1) comporte : • une aile (9) comportant deux demi-ailes (10), symétriques par rapport à un plan de symétrie antéropostérieur P dudit drone (1), destinées au moins à augmenter la portance dudit drone (1), chacune desdites deux demi-ailes (10) comportant au moins une portion mobile (11) apte à se déplacer par rapport à ladite structure porteuse (2) dudit drone (1) selon au moins un premier degré de liberté en rotation suivant un premier axe de rotation parallèle à une direction longitudinale X dudit drone (1), • deux premiers actionneurs électriques permettant de déplacer respectivement chacun ladite portion mobile (11) de l'une desdites deux demi-ailes (10).
Abstract:
A system comprising an aerial vehicle or an unmanned aerial vehicle (UAV) (100, 400, 1000, 1500) configured to control pitch, roll, and/or yaw via airfoils (141, 142, 1345, 1346) having resiliently mounted trailing edges opposed by fuselage-house deflecting actuator horns (621, 622). Embodiments include one or more rudder elements (1045, 1046, 1145, 1146, 1245, 1345, 1346, 1445, 1446, 1545, 1546) which may be rotatably attached and actuated by an effector member (1049, 1149, 1249, 1349) disposed within the fuselage housing (1001) and extendible in part to engage the one or more rudder elements.
Abstract:
An air vehicle (10) comprising a main body (12)and a pair of opposing wing members (14a, 14b) extending substantially laterally from the main body (12), at least a first propulsion device (16) associated with a first of said wing members (14a) and a second propulsion device (16) associated with a second of said wing members (14b), each said propulsion device (16) being arranged and configured to generate linear thrust relative to said main body (12), in use, the air vehicle further comprising a control module for generating a control signal configured to change a mode of flying of said air vehicle, in use, between a fixed wing mode (Figure 2) and a rotary wing mode (Figure 3), wherein, in said fixed wing mode of flying, the direction of thrust generated by the first propulsion device (16) relative to the main body (12) is the same as the direction of thrust generated by the second propulsion device (16), and in said second mode of flying, the direction of thrust generated by the first propulsion device (16) relative to the main body is opposite to that generated by the second propulsion device (16).