Abstract:
A system for localizing a swarm of robotic platforms utilizing ranging sensors. The swarm is localized by purposely leaving some of the platforms of the swarm stationary, providing localization to the moving ones. The platforms in the swarm can alternate between a stationary and moving state.
Abstract:
A method and system for sharing information between independent agents having a processor and memory having instructions stored thereon that, when executed by the processor, cause the system to receive signals indicative of a fault of a sensor system of a first independent agent; transmit signals indicative of a request for sensor information to a second independent agent; receive signals indicative of state information for the second independent agent in response to the receiving of the request for sensor information; and apply the state information to a navigation system of the first independent agent in response to the receiving of the state information.
Abstract:
A method, system and apparatus to detect when one or more airborne unmanned aerial vehicles (drones) are close to each other, and to take necessary actions to maintain a minimum distance between drones as well as a maximum distance among the drones in a dynamic environment by automatic navigation. A computer method and apparatus for holding a group of drones in a swarm formation by maintaining the group centroid of the group of drones within a tolerance of a predetermined location is also disclosed. Additionally, methods to move a swarm of drones along a predetermined path while maintaining the swarm formation of the drones is also disclosed.
Abstract:
Disclosed herein are example embodiments for unoccupied flying vehicle (UFV) location confirmance. For certain example embodiments, at least one machine, such as a UFV, may: (i) obtain at least one indication of at least one location of a UFV; or (ii) attempt to counter at least one attack against a location determination for the UFV. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
Methods and apparatus to cooperatively lift a payload are disclosed. An example method to control a lift vehicle includes determining a first positional state of the lift vehicle with respect to a payload controlled by a plurality of lift vehicles including the lift vehicle, determining a second positional state of the lift vehicle with respect to a goal location, detecting distances to the other ones of the plurality of lift vehicles, determining a third positional state of the lift vehicle based on the distances to the other ones of the plurality of lift vehicles, and calculating a control command to control the lift vehicle based on the first positional state, the second positional state, and the third positional state.
Abstract:
Disclosed herein are example embodiments for base station control for an unoccupied flying vehicle (UFV). For certain example embodiments, at least one machine, such as a base station, may: (i) obtain at least one indicator of at least one flight attribute corresponding to a first UFV; or (ii) transmit to a second UFV at least one indicator of at least one flight attribute corresponding to a first UFV. However, claimed subject matter is not limited to any particular described embodiments, implementations, examples, or so forth.
Abstract:
A tethered unmanned aerial vehicle (“UAV”) may be outfitted with a sensor payload for data gathering. The tethered UAV may be tethered to a ground station for constricting the flight space of the UAV while also providing the option for power delivery and/or bidirectional communications. The tethered UAV's flight path may be extended by introducing one or more secondary UAVs that cooperate to extend the horizontal flight path of a primary UAV. The ground station, which may be coupled with the tethered aerial vehicle, may comprise a listening switch configured to determine a condition of the tether such that the supply of power to the tether may be terminated when tether damage or a tether severance is detected.
Abstract:
A system for displaying an omnidirectional light show for an unmanned aerial vehicle (UAV) is disclosed herein. The system comprises an LED matrix comprising a plurality of LEDs distributed on the outer surface area of a body of the UAV. A Ground Control Station (GCS) is communicatively coupled to the UAV and is configured to transmit at least one flight program and at least one light program, wherein the at least one flight program and the at least one light program are synchronized in time and events. A LED light control unit is configured on the UAV and is communicatively coupled to the GCS for receiving instructions from the GCS to control a plurality of LED parameters in accordance with the at least one flight program and the at least one light program.
Abstract:
The present disclosure provides a system and a method for controlling a motion of a device from an initial state to a target state in an environment having obstacles that form constraints on the motion of the device. The method includes executing a learned function trained with machine learning to generate a feasible or infeasible trajectory connecting the initial state of the device with the target state of the device while penalizing an extent of violation of at least some of the constraints to produce an initial trajectory. The method further includes solving a convex optimization problem subject to the constraints to produce an optimal trajectory that minimizes deviation from the initial trajectory and controlling the motion of the device according to the optimal trajectory.
Abstract:
Methods and systems are described for an aerial drone system including a drone system controller, at least one working drone (101), and a plurality of support drones (103). The working drone (101) is operated by the drone system controller (125) to adjust a position of the working drone (101). A tether line (105) coupled to the working drone (101) provides electrical power to the working drone (101). The support drones (103) are each coupled to the tether line (105) at a different location along the tether line (105) forming a tethered aerial drone system. Each support (drone 103) supports a portion of the weight of the tether line (105) and is operated by the drone system controller (125) to adjust the position of the tether line (105) by adjusting the position of one or more of the support drones (103).