Abstract:
An optical fiber for optical amplifying, capable of amplifying optical signals at least in the vicinity of wavelengths of 1.57 to 1.62 mu m with a high gain in optical communication or the like. A clad (5) lower in refractive index than a core (1) is formed on the outer peripheral side of the erbium-added core (1), with the relative refractive index difference DELTA of the core (1) with respect to the clad (5) set to at least 0.3% and up to 1%. The core has a composition Er-Al2O3-GeO2-SiO2, and the clad has a composition SiO2, with erbium added to the entire region of the core at a concentration of 1000 wtppm and with the cutoff wavelength of the optical fiber set to 1400 nm. A constant cutoff wavelength of the optical fiber and an optimized relative refractive index difference DELTA can optimize a core diameter, avoid a reduction in gain due to an optical fiber bending loss, and increase a gain per optical fiber unit length by increasing an erbium absorption amount per optical fiber unit length.
Abstract:
The electric incandescent lamp has a quartz glass lamp vessel (1) or envelope (4') around the lamp vessel, which has a red coloured dope in the area at the side of the incandescent body (3). The quartz glass with red dope contains samarium oxide, aluminium oxide, titanium dioxide, and silicon dioxide, the analysis of the glass in its oxidized form being Sm2O3 1 to 3 % by weight, Al2O3 up to 3 % by weight, TiO2, rest SiO2, the molar ratio Al/Sn being at least about 2 and the molar ratio Sm/Ti being from 2 to 8.
Abstract translation:电白炽灯具有在灯泡周围的石英玻璃灯容器(1)或外壳(4'),其在白炽体(3)一侧的区域中具有红色涂料。 具有红色涂料的石英玻璃含有氧化钐II,氧化铝,二氧化钛和二氧化硅,其氧化形式的玻璃的分析为1至3重量%的Sm 2 O 3,3重量%的Al 2 O 3,TiO 2 ,剩余SiO 2,Al / Sn的摩尔比为至少约2,摩尔比Sm / Ti为2至8。
Abstract:
The disclosure relates to highly temperable colored glass compositions. The colored glass compositions have high coefficients of thermal expansion and high Young's moduli that advantageously absorb in the ultraviolet and/or blue wavelength ranges. Methods of making such glasses are also provided.
Abstract:
A tubular member for an exhaust gas treatment device according to at least one embodiment of the present invention includes: a tubular main body made of a metal; and an insulating layer formed at least on an inner peripheral surface of the tubular main body. The insulating layer contains glass containing a crystalline substance, and the glass contains silicon, boron, and magnesium.
Abstract:
The invention relates to a method allowing cost-effective production of doped quartz glass, particularly laser-active quartz glass, that is improved with regard to the homogeneity of the doping material distribution, in that a suspension is provided comprising SiO2 particles and an initial compound for at least one doping material in an aqueous fluid, the fluid being removed under formation of a doped intermediate product comprising particles of the doping material or particles of the precursor substance or the doping material, and the doped quartz glass is formed by sintering the doped intermediate product, wherein at least part of the particles of the doping material or the particles of the precursor substance of the same is generated in the suspension as a precipitate of a pH-value-controlled precipitation reaction of the initial compound.
Abstract:
An amplifier optical fiber comprising a central core of a dielectric matrix doped with at least one element ensuring the amplification of an optical signal transmitted in the fiber and a cladding surrounding the central core and suitable for confining the optical signal transmitted in the core. The fiber also comprises metallic nanostructures suitable for generating an electronic surface resonance in the dielectric matrix of central core, the wavelength of said electronic surface resonance corresponding to an excitation level of the element ensuring the amplification.
Abstract:
A preparation method of rare earth ions doped alkali metal silicate luminescent glass is provided. The steps involves: step 1, mixing the source compounds of cerium, terbium and alkali metals and putting the mixture into solvent to get a mixed solution; step 2, impregnating the nanometer micropores glass with the mixed solution obtained in step 1; step 3: calcining the impregnated nanometer micropores glass obtained in step 2 in a reducing atmosphere, cooling to room temperature, then obtaining the cerium and terbium co-doped alkali metal silicate luminescent glass. Besides, the rare earth ions doped alkali metal silicate luminescent glass prepared with aforesaid method is also provided. In the prepared luminescent glass, cerium ions can transmit absorbed energy to terbium ions under the excitation of UV light due to the co-doping of cerium ions. As a result, the said luminescent glass has higher luminous intensity than the glass only doped with terbium.
Abstract:
The present invention embraces an amplifying optical fiber having a central core adapted to convey and amplify an optical signal and a cladding that surrounds the central core to confine the optical signal conveyed in the central core. The central core is formed of a core matrix in which nanoparticles are present. The nanoparticles themselves include a nanoparticle matrix and rare-earth-dopant elements. The core matrix may also include one or more additional dopants (i.e., in addition to nanoparticles). The amplifying optical fiber possesses a small numerical aperture and is suitable for use in high-pump-power applications without a degraded gain shape.
Abstract:
As a jig material to use under plasma reaction for producing semiconductors, the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
Abstract:
A first step, in which P2O5-containing glass is deposited inside a silica glass pipe, and a second step, in which a Cl2-containing gas is introduced into the pipe and the P2O5-containing glass is dehydrated by heating the pipe, are repeated alternately. A third step, in which glass that does not contain P2O5 is deposited on the inside of the silica glass pipe, may further be provided such that the first step, the second step, and the third step are repeatedly performed in this order. A rare-earth-doped optical fiber, which has a attenuation of 15 dB/km or less at a wavelength of 1200 nm, comprises a core region and a cladding region enclosing the core region, wherein the core region includes phosphorus of 3 wt % or more, aluminum of 0.3 wt % or more, a rare-earth element of 500 wtppm or more, and chlorine of 0.03 wt % or more, and the cladding region has a refractive index that is lower than the refractive index of the core region.