Abstract:
A pressure accumulator has a housing having at least one pressure medium opening, a diaphragm chamber arranged inside the housing and having a side wall which is at least partially deformable, and a pressure medium chamber arranged outside of the diaphragm chamber, the pressure medium chamber at least partially being limited by a partially permeable material which allows an exit of gas from the pressure medium chamber but prevents an exit of a pressure medium from the pressure medium chamber.
Abstract:
A hollow body, especially a pressure vessel, which includes two hollow outer parts abutting with annular end faces against each other, which define together a substantially V-shaped groove ending at its apex short of the inner surfaces of the outer parts. The outer parts are aligned with each other by an inner tubular part which extends to opposite sides of the end faces of the outer parts in close proximity with the inner surfaces of the latter. A weld seam filling the V-shaped groove connects the outer parts to each other and fusible material between the outer surface of the inner part and the inner surfaces of the outer parts join these parts to each other. The pressure vessel preferably includes also a flexible membrane having adjacent its outer edge a bead located in a groove formed in the inner part and held therein by a retaining ring.
Abstract:
An accumulator for a hydraulic system includes a polymer liner defining a cavity. A metal bellows assembly is housed in the cavity and separates the cavity into a first chamber and a second chamber, with the first and second chambers isolated from one another by the bellows assembly. A composite shell substantially encases the liner. The liner and shell are configured so that the first chamber receives hydraulic fluid from and delivers hydraulic fluid through an opening in the liner and the shell as the bellows assembly expands and compresses due to pressurized gas in the second chamber balancing fluid pressure changes in the first chamber. In one embodiment, the metal bellows assembly includes hydro formed bellows.
Abstract:
Some embodiments of the present invention provide an accumulator tank assembly and method in which a flexible bladder is received within an accumulator tank. The accumulator tank and the flexible bladder can each have an inlet aperture through which fluid is received within the accumulator tank assembly and an outlet aperture through which fluid exits the accumulator tank assembly. In some embodiments, inlet and outlet flanges positioned adjacent the inlet and outlet apertures of the accumulator tank are used to couple the flexible bladder to internal or external surfaces of the accumulator tank, thereby creating fluid tight seals between the flexible bladder and the accumulator tank.