Abstract:
Mineral additives and a method for operating a waste-to-energy furnace are provided in order to improve its operational performance and availability, increase the lifetime of the combustor building materials (refractory walls and heat-exchanger metallic tubes) and flue gas treatment equipment, improve ash quality, reduce emissions and avoid combustion problems such as agglomeration, slagging, deposition and corrosion. A method for operating a waste-to-energy furnace, such as a fluidized bed reactor, pulverized-fuel combustor, grate combustor includes introducing mineral additive into the furnace. The method further includes heating at least a portion of the mineral additive either intimately in contact with the fuel, such that the ability of mineral additive to induce crystallization of the surface of forming ashes is enhanced, or minimizing the contact of the mineral additive with the fuel and the forming ashes, such that the solid-gas reactions between the mineral additive and the volatile compounds in the flue gas are favored and the mineral additive power to capture at least a portion of the inorganic volatile compounds present in the furnace is enhanced.
Abstract:
The disclosure is concerned with generating power using new organic fuel that is generated at wastewater purification plants in the form of sewage sludge with moisture content up to 90-95%. The world supplies this new orgabic fuel in very high quantites that are estimated to be more than 25-40 gr of dry mass/man/day. The new composite fuel comprises a coal suspension with the new dispersed medium, which is the liquid sewage sludge. The composite fuel is introduced into a furnace for combustion and generating power.
Abstract:
Es wird eine Vorrichtung und ein Verfahren zum Beschicken von Verarbeitungsanlagen, insbesondere Verbrennungsöfen (1) gezeigt, bei dem ein fließfähiges Verarbeitungsgut (3), das neben Flüssigkeitsanteilen (5) auch Festanteile (6) aufweist, in die Verarbeitungsanlage (1) über eine Förderleitung (2) druckbeaufschlagt eingebracht wird. Um vorteilhafte Beschickungsbedingungen zu schaffen, wird vorgeschlagen, dass das Verarbeitungsgut (3) vor der Druckbeaufschlagung gemischt wird.
Abstract:
A method and apparatus for reducing NOx emissions from the combustion of carbonaceous fuels using three stages of oxidation and second stage in-situ furnace flue gas recirculation. In the first stage, a partial oxidation combustor is used to partially combust the fuel in the presence of heated combustion air. The fuel gas produced in the partial oxidation process is passed to a second stage partial oxidation combustor while molten slag is removed and disposed of. A second preheated combustion air is introduced into the second stage combustor to produce a reducing flue gas and is injected into the furnace in such a way as to create the desired in-situ furnace flue gas recirculation. A third combustion air is mixed with the flue gas in a third stage of combustion to substantially complete the combustion process. Preheated steam may be added to the first or second stages of combustion.
Abstract:
The invention concerns a method for beneficiation of fly ash particles comprising: determining the heat value of the fly ash particles; comparing the determined heat value of the fly ash particles with a minimum heat value K; feeding an inlet of a combustor (5) with a feed material comprising the fly ash particles and, in case the determined heat value is lower than the minimum heat value K, fuel in sufficient quantity to assure that the heat value of the raw material is greater than or equal to the minimum heat value K; supplying an upstream airflow to the combustor (5) so as to carry the feed material in suspension from the inlet to an outlet of the combustor; operating the combustor (5) at a temperature of at least 700° C.; collecting beneficiated fly ash particles from the airflow at the outlet of the combustor (5). The invention also concerns an installation for implementation of the said method.
Abstract:
Mineral additives and a method for operating a waste-to-energy furnace are provided in order to improve its operational performance and availability, increase the lifetime of the combustor building materials (refractory walls and heat-exchanger metallic tubes) and flue gas treatment equipment, improve ash quality, reduce emissions and avoid combustion problems such as agglomeration, slagging, deposition and corrosion. A method for operating a waste-to-energy furnace, such as a fluidized bed reactor, pulverized-fuel combustor, grate combustor includes introducing mineral additive into the furnace. The method further includes heating at least a portion of the mineral additive either intimately in contact with the fuel, such that the ability of mineral additive to induce crystallization of the surface of forming ashes is enhanced, or minimizing the contact of the mineral additive with the fuel and the forming ashes, such that the solid-gas reactions between the mineral additive and the volatile compounds in the flue gas are favored and the mineral additive power to capture at least a portion of the inorganic volatile compounds present in the furnace is enhanced.
Abstract:
The present invention relates to a means and method for at least injecting mitigant particles into the combustion region (fireball) of a biomass boiler. The mitigant particles mitigate the slagging, fouling and corrosion problems caused by biomass ash by at least capturing the biomass ash. The mitigant particles capture the biomass ash by forming a physical bond with the biomass ash such that it adheres to the surface of mitigant particles. By injecting the mitigant particles into the combustion region, the opportunity to capture biomass ash is optimised.
Abstract:
Verfahren zur Reduzierung des Schadstoffpotentials in Abgasen und Rückständen von Verbrennungsanlagen. Die Aufgabe liegt darin, ein Verfahren zur Reduzierung der Korrosionsneigung und Schadstoffbildung von Abgasen in Verbrennungsanlagen bei einer Verbrennung von festen Brennstoffen mit stark variierender Chlorbeladung vorzuschlagen, das mit einer Abgasreinigung mit geringeren Überschuss an Neutralisationsmittel auskommt und die Qualität der Verbrennungsrückstände verbessert. Die Aufgabe wird dadurch gelöst, dass bei einer Verbrennung eines ersten Brennstoffstroms (6, 10) mit wechselnder Beladung an einem Schadstoffausgangsstoff zusätzlich mindestens ein zweiter Brennstoffstrom (6, 7) mit einer gleich bleibenden Beladung des Schadstoffausgangsstoff in die Verbrennung zugeführt wird, wobei ein Brennstoffgemisch mit einer konstanten Beladung an dem Schadstoffausgangsstoff entsteht.
Abstract:
An object of the invention is to provide a method for controlling an NOx concentration in an exhaust gas in a combustion facility that uses a pulverized coal, which can easily control the NOx concentration in the exhaust gas to be discharged from a fuel facility that uses the pulverized coal as the fuel to or below a regulation value according to the Air Pollution Control Law and the like, and can also reduce an amount of a denitrifying agent or the like to be used, which is necessary for the control, by controlling the NOx concentration on the basis of the properties of the pulverized coal beforehand. The invention further includes: measuring a reaction velocity of each of chars corresponding to a plurality of types of pulverized coals beforehand; determining a relationship between the NOx concentration in the exhaust gas and the reaction velocity in advance; blending the plurality of the types of the pulverized coals so that the reaction velocity of the char becomes such a value as to correspond to a target NOx concentration or below, on the basis of the relationship; and supplying the blended pulverized coal to the combustion facility as the fuel of the combustion facility.