Abstract:
Eyewear having radiation monitoring capability is disclosed. Radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or light, can be measured by a detector. The measured radiation can then be used in providing radiation-related information to a user of the eyewear. Advantageously, the user of the eyewear is able to easily monitor their exposure to radiation.
Abstract:
A wearable computing device includes an electronic display with a configurable brightness level setting, a physiological metric sensor system including a light source configured to direct light into tissue of a user wearing the wearable computing device and a light detector configured to detect light from the light source that reflects back from the user. The device may further include control circuitry configured to activate the light source during a first period, generate a first light detector signal indicating a first amount of light detected by the light detector during the first period, deactivate the light source during a second period, generate a second light detector signal indicating a second amount of light detected by the light detector during the second period, generate a physiological metric based at least in part on the first light detector signal and the second light detector signal, and modify the configurable brightness level setting based on the second light detector signal.
Abstract:
An electronic device includes one or more light sources for emitting light toward a body part of a user and one or more optical sensors for capturing light samples while each light source is turned on and for capturing dark samples while the light source(s) are turned off. A signal produced by the one or more optical sensors is filtered and demodulated produce multiple demodulated signals each associated with a light source. Each signal associated with the light source(s) is analyzed to estimate or determine a physiological parameter of the user.
Abstract:
An electronic device including a processor configured to receive a first radiation measurement and determine a skin surface condition information based on the first radiation measurement.
Abstract:
An electronic device is provided which includes a light emitting module that radiates infrared light, a window disposed on the light emitting module and having a specific refractive index with respect to the infrared light, wherein the window includes a refraction part that totally reflects the infrared light inside the window in correspondence with the specific refractive index, and a fingerprint sensor disposed under the window and obtaining a fingerprint of a user based on a user input on the window by using scattered light of the infrared light.
Abstract:
The invention relates to a light sensing device for sensing ambient light intensity, comprising at least one ambient light sensor and an occlusion detector for detecting an object occluding the ambient light sensor. The invention is further related to a corresponding method for sensing ambient light intensity.
Abstract:
The present application discloses device and system embodiments that address mobile device integration considerations for various categories of UV sensors, including cameras, photodiodes, and chemical sensors. The UV sensors may use the functionalities of the existing in-built sensors in conventional mobile devices, and/or integrate additional components specific to UV sensing. By optimally positioning the sensors, UV sensing and other collateral functionalities (e.g., charging a photovoltaic cell integrated with the mobile device) can be realized in parallel.
Abstract:
Eyewear having radiation monitoring capability is disclosed. Radiation, such as ultraviolet (UV) radiation, infrared (IR) radiation or light, can be measured by a detector. The measured radiation can then be used in providing radiation-related information to a user of the eyewear. Advantageously, the user of the eyewear is able to easily monitor their exposure to radiation.
Abstract:
An apparatus can include a wrist worn device configured to be worn on a wrist of a user. The apparatus can include a controller. The apparatus can include a power supply. The apparatus can include a light emitter that can emit light from a user side of the wrist worn device to a wrist of the user. The apparatus can include a light detector that can detect light reflected from the wrist of the user from the first light emitter and can send a detector signal to the controller. The detector signal can be based on the detected light. The apparatus can include a lens coupled to a user side of the wrist worn device external to the light emitter and light detector. The lens can include an opaque section. The lens can also include light transmissive section that transmits light from the light emitter to the user.
Abstract:
According to one aspect, embodiments herein provide a sensing device comprising an accelerometer configured to monitor acceleration of the sensing device and provide acceleration information including a value of the acceleration of the sensing device, and an Integrated Circuit (IC) coupled to the accelerometer, the IC configured to receive the acceleration information from the accelerometer and render the sensing device permanently inoperable in response to the value of the acceleration of the sensing device exceeding a threshold indicative of a military application of the sensing device.