Abstract:
A hyperspectral imaging system and method are described herein for providing a hyperspectral image of an area of a remote object (e.g., scene of interest). The hyperspectral imaging system includes at least one optic, a scannable slit mechanism, a spectrometer, a two-dimensional image sensor, and a controller. The scannable slit mechanism can be a micro-electromechanical system spatial light modulator (MEMS SLM), a diffractive Micro-Opto-Electro-Mechanical Systems (MOEMS) spatial light modulator (SLM), a digital light processing (DLP) system, a liquid crystal display, a rotating drum with at least one slit formed therein, or a rotating disk with at least one slit formed therein.
Abstract:
A simple and compact apparatus, and a method, for determining the characteristics of a number of fluids used in the truck and automotive industries including coolant, bio- diesel, gas-ethanol and diesel engine fluid (DEF). The apparatus includes a sample container (26) providing optical paths of different lengths for making measurements on a sample. The dual path length design allows the apparatus to capture both NIR and UV spectral ranges. The qualitative and quantitative properties of the fluid under test are compared to test results under normal conditions or to the properties of unused fluid. Two light sources (64, 67) are used within a spectrometer with each source being associated with a different optical path length.
Abstract:
A multispectral staring array (10) comprises, amongst other things, at least two sensors (28, 30) where each sensor is adapted to detect an image in a different predetermined spectral sensitivity; a first lens (14) to focus capture spectral bands; a spectral filter (20, 22) between the lens (14) and the sensors (28, 30) to subdivide the incident spectral bands; and a second lens (24, 26) to direct and focus the subdivided incident spectral bands on each of the sensors (28, 30).
Abstract:
An inline spectroscopic reader having a light source, one or more optics heads, a spectrometer and a data processing system in digital communication with the spectrometer detector. The optics heads include transmission optics providing for the illumination of a target with light from the light source and detection optics providing for the collection of light from the target. Typically, the target is moving with respect to the optics head during spectroscopic interrogation. The spectroscopic reader is thus an inline reader well suited to provide spectrum based production or analytical decision making in real time as the target moves along a production or analysis line. Also disclosed are methods including the steps of illuminating a target with light from a light source; collecting light from the target; obtaining a digitized spectrum with a spectrometer; extracting information content from the digitized spectrum; and basing a contemporaneous process decision upon the information content.
Abstract:
An image slicer is disclosed which includes a first surface 1 and a second surface 2. The surfaces are inclined with respect to each other, wherein the first surface has an edge 3 and the second surface has an edge 4 and these edges are alongside but inclined with respect to each other. A light beam 9 having a first beam portion 12 that hits the first surface and a second beam portion that does not hit the first surface will thus be at least partially refracted by the image slicer, wherein the first beam portion will be guided, due to refraction, in another direction than the second beam portion.
Abstract:
A spectral characteristic obtaining apparatus including a light irradiation unit configured to emit light onto a reading object; a spectroscopic unit configured to separate at least a part of diffused reflected light from the light emitted onto the reading object by the light irradiation unit into a spectrum; and a light receiving unit configured to receive the diffused reflected light separated into the spectrum by the spectroscopic unit and to obtain a spectral characteristic. The light receiving unit is configured to be a spectroscopic sensor array including plural spectroscopic sensors arranged in a direction, and the spectroscopic sensors include a predetermined number of pixels arranged in the direction to receive lights with different spectral characteristics from each other.
Abstract:
The invention generally relates to spectrometers and optical systems useful therein. More particularly, the invention generally relates to optical systems and systems having improved functionalities, flexibilities, and design options. For example, optical systems of the invention employ an aberration-corrected concave grating along with one or more transmissive aberration correctors.
Abstract:
An objective lens assembly suitable for use in helmet-mounted applications. The objective lens assembly comprises two prisms that collectively are configured, oriented and bonded relative to each other to separate and allow simultaneous imaging of two separate spectral bands (such as VNIR and LWIR bands) received from the same object scene via a common window such that the object scene may be viewed from the same perspective without the effects of parallax.