METHOD AND APPARATUS FOR DETERMINATION OF REFRACTIVE INDEX
    132.
    发明公开
    METHOD AND APPARATUS FOR DETERMINATION OF REFRACTIVE INDEX 失效
    装置和方法来确定折射率

    公开(公告)号:EP0736172A1

    公开(公告)日:1996-10-09

    申请号:EP94912724.0

    申请日:1994-04-08

    CPC classification number: G01N21/7746 G01N21/41 G01N2201/0873

    Abstract: In a method of determining the refractive index of a gaseous, liquid or solid sample, preferably a gaseous or liquid sample, there is used a waveguide resonator (1) which includes an open waveguide (4) and a closed waveguide (5) located adjacent the open waveguide. The sample is brought to the vicinity of the closed waveguide (5) so as to influence the proximal surroundings of the waveguide and therewith its effective refractive index. Light derived from a light source (9) is coupled to one end of the open waveguide (4) and transmitted light is measured at the other end of the open waveguide to establish the influence of the sample on the resonance wavelength and therewith determine the refractive index of the sample or a sample-related refractive index difference. A device for carrying out the method includes a waveguide resonator having a sample contact area (12) adjacent the closed waveguide (5) of the waveguide resonator.

    LICHTLEITVORRICHTUNG, MESSSYSTEM UND VERFAHREN ZUM HERSTELLEN EINER LICHTLEITVORRICHTUNG

    公开(公告)号:EP3347696A1

    公开(公告)日:2018-07-18

    申请号:EP16751617.8

    申请日:2016-08-17

    Abstract: The invention relates to a light guide device (102) for conducting a light beam (108) between a light source (107) and a measuring unit (114) for measuring a gas or substance concentration. The light guide device (102) comprises a light conductor (104) having at least one coupling section (106), which faces, or can be arranged to be turned toward, the light source (107), for coupling the light beam (108), and a decoupling section (110), which faces, or can be arranged to be turned toward, the measuring unit (114), for decoupling the light beam (108). The light conductor (104) is designed to conduct the light beam (108) between the coupling section (106) and the decoupling section (110) via total reflection on a boundary surface to a fluid or material surrounding the light conductor (104) which has a smaller refractive index than the light conductor (104). Furthermore, the light guide device (102) has a holding apparatus (120) which is designed to hold the light conductor (104) in the fluid such that at least one primary portion of a surface of the light conductor (104) contacts the fluid.

    INTEGRATED SEMICONDUCTOR DEVICE FOR DETECTING FLUORESCENT PARTICLES

    公开(公告)号:EP3146312B1

    公开(公告)日:2018-07-04

    申请号:EP15724643.0

    申请日:2015-05-22

    Applicant: IMEC vzw

    Abstract: The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.

    HYDROCARBON SENSING METHODS AND APPARATUS
    136.
    发明公开
    HYDROCARBON SENSING METHODS AND APPARATUS 审中-公开
    KOHLENWASSERSTOFFMESSVERFAHREN UND -VORRICHTUNG

    公开(公告)号:EP2994785A1

    公开(公告)日:2016-03-16

    申请号:EP14794194.2

    申请日:2014-05-08

    Abstract: A chip-scale, reusable sensor can detect aromatic hydrocarbons, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), rapidly in water without sample preparation. The device is capable of real-time, continuous monitoring for BTEX solutes, which diffuse into a film, such as a polymer, on the sensors surface. In operation, BTEX analytes concentrate in the film, causing an increase in refractive index, which modulates evanescent coupling into the chips integrated photodetector array. Integration of the photodetector array simplifies system instrumentation and permits incorporation of an on-chip photocurrent reference region in the immediate vicinity of the sensing region, reducing drift due to temperature fluctuations. In some examples, the chip responds linearly for BTEX concentrations between 1 ppm and 30 ppm, with a limit of detection of 359 ppb, 249 ppb, and 103 ppb for benzene, toluene, and xylene in water, respectively.

    Abstract translation: 芯片规模可重复使用的传感器可以在无需样品制备的情况下快速检测芳烃,如苯,甲苯,乙苯和二甲苯(BTEX)。 该装置能够实时,连续地监测传感器表面上扩散到薄膜(如聚合物)中的BTEX溶质。 在操作中,BTEX分析物集中在膜中,引起折射率的增加,其调节到芯片集成光电检测器阵列中的ev逝耦合。 光电检测器阵列的集成简化了系统仪器,并且允许在感测区域附近并入片上光电流参考区域,从而减少由于温度波动引起的漂移。 在一些实例中,芯片对于1ppm和30ppm之间的BTEX浓度线性反应,分别在苯,苯和二甲苯的检测限为359ppb,249ppb和103ppb。

    Fiber optic chemical sensor
    139.
    发明公开
    Fiber optic chemical sensor 失效
    Faseroptischer化学传感器。

    公开(公告)号:EP0534670A1

    公开(公告)日:1993-03-31

    申请号:EP92308460.2

    申请日:1992-09-17

    CPC classification number: G01N21/7703 G01N2201/0873

    Abstract: A fiber optic sensor for detecting the presence or concentration of particular chemical or biological species in a zone to be monitored has light-emitting and detecting elements such as a gallium arsenide light-emitting diode and a Schottky diode light detector provided in a semiconductor body, and has an optical fiber formed in situ on a surface of the body to conduct light from the light-emitting diode to the detector. The fiber has a long light-transmitting core of a material such as silicon dioxide deposited on a semiconductor body surface and defined by photolithographic techniques and has a cladding deposited over and around the core of a material of relatively lower refractive index than the core. The cladding material reacts when contacted by the particular chemical or biological species to produce measurable changes in transmission of light through the fiber so that the detector provides an electrical signal representative of the presence or concentration of the species.

    Abstract translation: 用于检测待监测区域中特定化学或生物物质的存在或浓度的光纤传感器具有发光和检测元件,例如设置在半导体本体中的砷化镓发光二极管和肖特基二极管光检测器, 并且具有在本体的表面上原位形成的光纤,以将来自发光二极管的光传导到检测器。 光纤具有长的透光芯,诸如沉积在半导体主体表面上的二氧化硅的材料,并通过光刻技术限定,并且具有沉积在比芯更低折射率的材料的芯上和周围的包层。 包层材料在被特定化学或生物物质接触时反应,以产生通过纤维的光透射的可测量的变化,使得检测器提供代表物种的存在或浓度的电信号。

    Optischer Sensor
    140.
    发明公开
    Optischer Sensor 失效
    光学传感器

    公开(公告)号:EP0487992A3

    公开(公告)日:1992-11-19

    申请号:EP91119499.1

    申请日:1991-11-15

    Abstract: Ein optischer Sensor (1) weist eine integriert optische Anordnung zur Messung des optischen Absorptionskoeffizienten und der Brechzahl flüssiger oder gasförmiger Medien auf. Dieser optische Sensor kann als Interferometer ausgebildet sein, wobei in einem Wellenleiter-Zweig (4b) ein sensitiver Bereich (6) vorgesehen ist. In diesem sensitiven Bereich ist der Wellenleiterabschnitt des Wellenleiter-Zweiges (4b) mit einer sensitiven Schicht (8) aus einem Heteropolysiloxan überdeckt. Die übrigen Wellenleiterabschnitte sind durch eine dielektrische Schicht (7) abgedeckt. Durch die sensitive Schicht (8) aus einem Heteropolysiloxan ist in vorteilhafterweise eine selektive Wechselwirkung mit dem nachzuweisenden Stoff ermöglicht. Unter dem Einfluß des nachzuweisenden Stoffes ändert die sensitive Schicht (8) ihre optischen Eigenschaften, die entsprechend ausgewertet werden. Der optische Sensor kann insbesondee auch dort eingesetzt werden, wo elektrische Sensoren problematisch sind, insbesondere in der Umgebung von starken elektromagnetischen Impulsen oder HF-Strahlung oder auch in explosionsgefährdeter Umgebung.

    Abstract translation: 光学传感器(1)具有用于测量液体或气体介质的光学吸收系数和折射率的集成光学装置。 该光学传感器可以形成为干涉仪,其中在波导分支(4b)中设置敏感区域(6)。 在该敏感区域中,波导分支(4b)的波导部分被杂聚硅氧烷的敏感层(8)覆盖。 剩余的波导部分被介电层(7)覆盖。 通过杂聚硅氧烷的敏感层(8)可以有利地实现与待检测物质的选择性相互作用。 在待检测物质的影响下,敏感层(8)改变其光学性质,并据此进行评估。 特别是在强电磁脉冲或RF辐射的环境中或爆炸性环境中,光传感器也可以用于特别是电传感器有问题的情况。

Patent Agency Ranking