Abstract:
Chemical and biosensors are disclosed. An optical waveguide (11) is used to conduct electromagnetic radiation by total internal reflection in parallel through a reference waveguide portion (12) and at least one analyte waveguide portion (14). The electromagnetic radiation is then converged into an exit beam. The external surface of at least the analyte portion is covalently modified, or functionalized, relative to the reference portion. Resulting interaction of the functionalized surface with molecules comprising an analyte causes a phase change in the electromagnetic radiation passing through the analyte portion relative to the reference portion sufficient to generate a corresponding and measurable interference pattern in the exit beam.
Abstract:
In a method of determining the refractive index of a gaseous, liquid or solid sample, preferably a gaseous or liquid sample, there is used a waveguide resonator (1) which includes an open waveguide (4) and a closed waveguide (5) located adjacent the open waveguide. The sample is brought to the vicinity of the closed waveguide (5) so as to influence the proximal surroundings of the waveguide and therewith its effective refractive index. Light derived from a light source (9) is coupled to one end of the open waveguide (4) and transmitted light is measured at the other end of the open waveguide to establish the influence of the sample on the resonance wavelength and therewith determine the refractive index of the sample or a sample-related refractive index difference. A device for carrying out the method includes a waveguide resonator having a sample contact area (12) adjacent the closed waveguide (5) of the waveguide resonator.
Abstract:
Chemical and biosensors are disclosed. An optical waveguide (11) is used to conduct electromagnetic radiation by total internal reflection in parallel through a reference waveguide portion (12) and at least one analyte waveguide portion (14). The electromagnetic radiation is then converged into an exit beam. The external surface of at least the analyte portion is covalently modified, or functionalized, relative to the reference portion. Resulting interaction of the functionalized surface with molecules comprising an analyte causes a phase change in the electromagnetic radiation passing through the analyte portion relative to the reference portion sufficient to generate a corresponding and measurable interference pattern in the exit beam.
Abstract:
The invention relates to a light guide device (102) for conducting a light beam (108) between a light source (107) and a measuring unit (114) for measuring a gas or substance concentration. The light guide device (102) comprises a light conductor (104) having at least one coupling section (106), which faces, or can be arranged to be turned toward, the light source (107), for coupling the light beam (108), and a decoupling section (110), which faces, or can be arranged to be turned toward, the measuring unit (114), for decoupling the light beam (108). The light conductor (104) is designed to conduct the light beam (108) between the coupling section (106) and the decoupling section (110) via total reflection on a boundary surface to a fluid or material surrounding the light conductor (104) which has a smaller refractive index than the light conductor (104). Furthermore, the light guide device (102) has a holding apparatus (120) which is designed to hold the light conductor (104) in the fluid such that at least one primary portion of a surface of the light conductor (104) contacts the fluid.
Abstract:
The present disclosure relates to semiconductor devices for detecting fluorescent particles. At least one embodiment relates to an integrated semiconductor device for detecting fluorescent tags. The device includes a first layer, a second layer, a third layer, a fourth layer, and a fifth layer. The first layer includes a detector element. The second layer includes a rejection filter. The third layer is fabricated from dielectric material. The fourth layer is an optical waveguide configured and positioned such that a top surface of the fourth layer is illuminated with an evanescent tail of excitation light guided by the optical waveguide when the fluorescent tags are present. The fifth layer includes a microfluidic channel. The optical waveguide is configured and positioned such that the microfluidic channel is illuminated with the evanescent tail. The detector element is positioned such that light from activated fluorescent tags can be received.
Abstract:
A chip-scale, reusable sensor can detect aromatic hydrocarbons, such as benzene, toluene, ethylbenzene, and xylenes (BTEX), rapidly in water without sample preparation. The device is capable of real-time, continuous monitoring for BTEX solutes, which diffuse into a film, such as a polymer, on the sensors surface. In operation, BTEX analytes concentrate in the film, causing an increase in refractive index, which modulates evanescent coupling into the chips integrated photodetector array. Integration of the photodetector array simplifies system instrumentation and permits incorporation of an on-chip photocurrent reference region in the immediate vicinity of the sensing region, reducing drift due to temperature fluctuations. In some examples, the chip responds linearly for BTEX concentrations between 1 ppm and 30 ppm, with a limit of detection of 359 ppb, 249 ppb, and 103 ppb for benzene, toluene, and xylene in water, respectively.
Abstract:
A fiber optic sensor for detecting the presence or concentration of particular chemical or biological species in a zone to be monitored has light-emitting and detecting elements such as a gallium arsenide light-emitting diode and a Schottky diode light detector provided in a semiconductor body, and has an optical fiber formed in situ on a surface of the body to conduct light from the light-emitting diode to the detector. The fiber has a long light-transmitting core of a material such as silicon dioxide deposited on a semiconductor body surface and defined by photolithographic techniques and has a cladding deposited over and around the core of a material of relatively lower refractive index than the core. The cladding material reacts when contacted by the particular chemical or biological species to produce measurable changes in transmission of light through the fiber so that the detector provides an electrical signal representative of the presence or concentration of the species.
Abstract:
Ein optischer Sensor (1) weist eine integriert optische Anordnung zur Messung des optischen Absorptionskoeffizienten und der Brechzahl flüssiger oder gasförmiger Medien auf. Dieser optische Sensor kann als Interferometer ausgebildet sein, wobei in einem Wellenleiter-Zweig (4b) ein sensitiver Bereich (6) vorgesehen ist. In diesem sensitiven Bereich ist der Wellenleiterabschnitt des Wellenleiter-Zweiges (4b) mit einer sensitiven Schicht (8) aus einem Heteropolysiloxan überdeckt. Die übrigen Wellenleiterabschnitte sind durch eine dielektrische Schicht (7) abgedeckt. Durch die sensitive Schicht (8) aus einem Heteropolysiloxan ist in vorteilhafterweise eine selektive Wechselwirkung mit dem nachzuweisenden Stoff ermöglicht. Unter dem Einfluß des nachzuweisenden Stoffes ändert die sensitive Schicht (8) ihre optischen Eigenschaften, die entsprechend ausgewertet werden. Der optische Sensor kann insbesondee auch dort eingesetzt werden, wo elektrische Sensoren problematisch sind, insbesondere in der Umgebung von starken elektromagnetischen Impulsen oder HF-Strahlung oder auch in explosionsgefährdeter Umgebung.