Abstract:
A method and apparatus for planarizing a substrate are provided. A substrate carrier head with an improved cover for holding the substrate securely is provided. The cover may have a bead that is larger than the recess into which it fits, such that the compression forms a conformal seal inside the recess. The bead may also be left uncoated to enhance adhesion of the bead to the surface of the groove. The surface of the cover may be roughened to reduce adhesion of the substrate to the cover without using a non-stick coating.
Abstract:
A sandblasting agent which can prevent fouling by metal ions; and a method of sandblasting a silicon wafer with the agent. The method comprises using a sandblasting agent containing a chelating agent. The chelating agent is selected, for example, among the following (1) to (4) and salts of these. (1) Nitrilotriacetic acid (NTA); (2) Ethylenediaminetetraacetic acid (EDTA); (3) Diethylenediamine-N,N,N'',N''-pentaacetic acid (DTPA); (4) Cyclohexanediaminetetraacetic acid (CyDTA).
Abstract:
Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Festkörperschichten, insbesondere zur Verwendung als Wafer, mit den folgenden Schritten: Bereitstellen eines Werkstücks (4) zum Ablösen der Festkörperschichten, wobei das Werkstück (4) zumindest eine exponierte Oberfläche aufweist, Erzeugen und/oder Bereitstellen einer Trägereinheit zum Aufnehmen mindestens einer Festkörperschicht, wobei die Trägereinheit mehrschichtig aufgebaut wird, wobei die Trägereinheit eine Stabilisierungsschicht (1) aufweist und die Stabilisierungsschicht (1) zumindest abschnittsweise durch eine Aufnahmeschicht (2) überlagert wird, wobei die Aufnahmeschicht (2) zum Halten der Festkörperschicht ausgebildet wird, und wobei die Stabilisierungsschicht (1) zumindest abschnittsweise derart ausgebildet wird, dass sie einen E-Modul aufweist, der größer ist als der E-Modul der Aufnahmeschicht (2), Verbinden der Aufnahmeschicht (2) mit der exponierten Oberfläche des Werkstücks (4) unter Bildung einer Kompositstruktur, Beaufschlagen der Kompositstruktur mit einem inneren und/oder äußeren Spannungsfeld in der Art, dass die Festkörperschicht entlang einer sich innerhalb des Werkstücks (4) erstreckenden Ebene von dem Werkstück (4) abgelöst wird.
Abstract:
A method is disclosed which includes: forming at least one layer of material on at least part of a surface of a first substrate, wherein a first surface of the at least one layer of material is in contact with the first substrate thereby defining an interface; attaching a second substrate to a second surface of the at least one layer of material; forming bubbles at the interface; and applying mechanical force; whereby the second substrate and the at least one layer of material are jointly separated from the first substrate. Related arrangements are also described.
Abstract:
An epitaxial article (100) includes an epitaxial substrate (120) providing a substrate surface (103) having a substrate surface composition including crystalline defect or amorphous regions (111) and crystalline non-defect regions (112). The crystalline defect or amorphous regions are recessed from the substrate surface by surface recess regions, where a capping material (108) fills the surface recess regions to provide capped defects 113(a) that extend from a top of the defect regions to the substrate surface. The capping material is compositionally different from the substrate surface composition. An epitaxial layer (115) over the substrate surface provides an average crystalline defect density in at least one area having a size = 0.5 µm2 that is = two times lower than an average crystalline defect density in that area at or below the substrate surface.
Abstract:
고온(25℃ 이상)에서의 안정성 및 에칭률(etch rate)이 우수하고, 고굴절률을 갖는 유기 반사방지막 형성용 이소시아누레이트 화합물 및 이를 포함하는 조성물이 개시된다. 상기 유기 반사방지막 형성용 이소시아누레이트 화합물은, 청구항 1의 화학식 1로 표시된다. 상기 화학식 1에서, R은 각각 독립적으로, 수소 또는 메틸기이고, R 1 은, 각각 독립적으로, 0 내지 6의 헤테로 원자를 포함하는 탄소수 1 내지 15의 사슬형 또는 고리형의 포화 또는 불포화 탄화수소이고, R 2 는 각각 독립적으로, 0 내지 15의 헤테로 원자를 포함하는 탄소수 1 내지 15 사슬형 또는 고리형의 포화 또는 불포화 탄화수소이다.
Abstract:
The present application discloses a method for controlling an implanting tool. The method includes executing a first implantation recipe on a current wafer; generating a first set of data of the current wafer by a first measurement module; analyzing the first set of data by an artificial intelligence module coupled to the first measurement module; generating, by the artificial intelligence module, a second implantation recipe and applying the second implantation recipe to the implantation tool when the first set of data is not within a predetermined range; and executing the second implantation recipe on a next wafer.
Abstract:
The invention provides, in one instance, a group III nitride wafer sliced from a group III nitride ingot, polished to remove the surface damage layer and tested with x-ray diffraction. The x-ray incident beam is irradiated at an angle less than 15 degree and diffraction peak intensity is evaluated. The group III nitride wafer passing this test has sufficient surface quality for device fabrication. The invention also provides, in one instance, a method of producing group III nitride wafer by slicing a group III nitride ingot, polishing at least one surface of the wafer, and testing the surface quality with x-ray diffraction having an incident beam angle less than 15 degree to the surface. The invention also provides, in an instance, a test method for testing the surface quality of group III nitride wafers using x-ray diffraction having an incident beam angle less than 15 degree to the surface.