Abstract:
A ducted fan air vehicle and method of operation is disclosed for obtaining aerodynamic lift and efficiency in forward fliglit operation without significantly impacting hover stability. One or more retractable wings (301) are included on the ducted fan air vehicle and are deployed during forward flight to provide aerodynamic lift. The wing or wings are retracted when the vehicle hovers to reduce the impact the wings have on stability in a wind. Each wing may conform to the curvature or profile of the vehicle when retracted, and may be constructed in one or more wing sections. The wing or wings may be deployed and retracted automatically or at the command of an operator. Each wing and related components may be integrated into the vehicle or may be detachable.
Abstract:
A Micro Air-Vehicle (MAV) starting system that provides the combined functions of: packing protection of sensitive vehicle components, a mechanical starting assembly, and a launch pad. The preferred embodiment comprises a container (110) and a container lid (101) with the MAV (200) clamped to the lid. Also disposed on the container lid is a starting assembly (111). The lid (101) which doubles as a launching pad with the attached MAV (200) is removed from the container (110), placed on the ground, the MAV (200) is started with the starling mechanism and launched. The arrangement minimizes the physical risk to the operator, minimizes weight of the total MAV system, consumes minimum space in the operators transport system, and eliminates dependence on supply lines for battery replacement or charging.
Abstract:
Autonomous micro air vehicles (102) surveillance systems are provided. A MAV system of one embodiment includes an MAV and a launch pad (120). The MAV has an engine (103) that is adapted to power the MAV. The launch pad has a starter (128) that is adapted to start the engine in the MAV when the MAV is resting on a launching surface (142) of the launch pad. The launch pad further has a battery (126) to power the starter.
Abstract:
VTOL micro-aircraft comprising a first and a second ducted rotor (1, 2) mutually aligned and distanced according to a common axis and whose propellers (4, 6) are driven in rotation in mutually opposite directions. Between the two ducted rotors (1, 2) are positioned a fuselage (3) and a wing system (13) formed by wing profiles (10, 11) forming an X or an H configuration and provided with control flaps (16).
Abstract:
An aircraft may include a body structure and a propulsion system coupled to the body structure and including a mounting shaft and a rotor. The rotor may include a rotor hub and a set of rotor blades, wherein the rotor is configured to orient the set of rotor blades at a first collective blade angle during a first flight mode and orient the set of rotor blades at a second collective blade angle during a second flight mode. The propulsion system may further include a motor coupled to the rotor and configured to rotate the rotor in a first rotational direction in the first flight mode to produce thrust in a first thrust direction and rotate the rotor in a second rotational direction opposite the first rotational direction in the second flight mode to produce thrust in a second thrust direction opposite the first thrust direction.
Abstract:
Systems, devices, and methods for receiving image data; transferring the captured image data to a server having a processor and addressable memory via a network-connected computing device; storing the captured image data on the server; generating captured image metadata based on the stored captured image data; providing access to the captured image data and captured image metadata via an image management component; displaying, by the image management component, the captured image data; and filtering, by the image management component, the captured image data based on the generated captured image metadata.
Abstract:
An aircraft operable to transition between a forward flight mode and a vertical takeoff and landing flight mode. The aircraft includes an airframe having first and second wings. A plurality of propulsion assemblies is attached to the airframe with each of the propulsion assemblies including a nacelle and a tail assembly having at least one active aerosurface. A flight control system is operable to independently control each of the propulsion assemblies. For each of the propulsion assemblies, the tail assembly is rotatable relative to the nacelle such that the active aerosurface has a first orientation generally parallel to the wings and a second orientation generally perpendicular to the wings.
Abstract:
Methods and apparatus for reducing energy consumed by drones during flight are disclosed. A drone includes a housing, a motor, and a route manager to generate a route for a flight of the drone based on wind data. The wind data includes turbine-generated wind data provided by turbines that detect airflows received at the turbines. The turbines are located in an area within which a segment of the flight of the drone is to occur. The route is to be followed by the drone during the flight to reduce energy consumed by the drone during the flight.
Abstract:
A manned/unmanned aerial vehicle adapted for vertical takeoff and landing using the same set of engines for takeoff and landing as well as for forward flight. An aerial vehicle which is adapted to takeoff with the wings in a vertical as opposed to horizontal flight attitude which takes off in this vertical attitude and then transitions to a horizontal flight path. An aerial vehicle system which has removable wing sections which allow for re-configuration with different wing section types, allowing for configurations adapted for a particular flight profile. A method of customizing a configuration of an unmanned aerial vehicle based upon flight profile factors such as duration, stability, and maneuverability.