METHOD OF FABRICATING MAGNETICALLY ACTUATED ARTIFICIAL CILIA
    142.
    发明申请
    METHOD OF FABRICATING MAGNETICALLY ACTUATED ARTIFICIAL CILIA 审中-公开
    制造磁性人造纤维的方法

    公开(公告)号:US20150097317A1

    公开(公告)日:2015-04-09

    申请号:US14093536

    申请日:2013-12-02

    Abstract: Provided is a method of fabricating magnetic cilia including the following steps. Step (A): A mold is provided in which a plurality of micro-channels are formed, wherein the aperture of each of the micro-channels is between 50 μm and 350 μm, and the depth of each of the micro-channels is between 500 μm and 3,500 μm. Step (B): A raw material is spread onto the mold and filled into each of the micro-channels, wherein the raw material includes a polymer and magnetic particles dispersed therein. Step (C): A heat treatment is performed to harden the raw material in each of the micro-channels into a magnetic cilium. Step (D): A mold release process is performed to isolate each of the magnetic cilia from each of the micro-channels.

    Abstract translation: 提供一种制造磁性纤毛的方法,包括以下步骤。 步骤(A):提供一种模具,其中形成多个微通道,其中每个微通道的孔径在50μm和350μm之间,并且每个微通道的深度在 500μm和3500μm。 步骤(B):将原料分散在模具上,并填充到每个微通道中,其中原料包括分散在其中的聚合物和磁性颗粒。 步骤(C):进行热处理,将每个微通道中的原料硬化成磁性纤维。 步骤(D):进行脱模过程以将每个微纤维与每个微通道隔离。

    Motion conversion system
    145.
    发明授权
    Motion conversion system 有权
    运动转换系统

    公开(公告)号:US08621938B2

    公开(公告)日:2014-01-07

    申请号:US13466386

    申请日:2012-05-08

    Abstract: A motion conversion system is described. The motion conversion system comprises a first torsional member operative for rotating in a first direction. A second torsional member is offset a distance from the first torsional member, wherein the second torsional member is operative for rotating in a direction opposite from the first direction. And, a lateral member has a lower surface connected to the first and second torsional members. Wherein, translational movement of the lateral member results from rotational movement of the first and second torsional members.

    Abstract translation: 描述运动转换系统。 运动转换系统包括可操作用于沿第一方向旋转的第一扭转构件。 第二扭转构件偏离与第一扭转构件的距离,其中第二扭转构件可操作用于沿与第一方向相反的方向旋转。 并且,横向构件具有连接到第一和第二扭转构件的下表面。 其中,横向构件的平移运动是由第一和第二扭转构件的旋转运动引起的。

    Method and apparatus for electromagnetic actuation
    146.
    发明授权
    Method and apparatus for electromagnetic actuation 有权
    电磁驱动的方法和装置

    公开(公告)号:US08581678B2

    公开(公告)日:2013-11-12

    申请号:US12373778

    申请日:2007-07-18

    Abstract: Embodiments of the subject invention relate to a method and apparatus for electromagnetic actuation. Embodiments of an electromagnet actuator in accordance with the subject invention can include a fixed main body and a deformable membrane or displaceable piston-like member. In the case of piston motion, in specific embodiments, the piston can be supported by a corrugated diaphragm or bellows. In various embodiments, all or portions of the electromagnet actuator can be produced using microfabrication techniques. Specific embodiment of the subject invention can incorporate a plurality of magnets providing magnetic flux to a plurality of coil conductor elements so as to provide a plurality of locations that a force is applied to the moveable body portion of the electromagnetic actuator. Specific embodiments can incorporate an array of magnets interdigitated with an array of coil conductor elements, where the arrays can include 2, 5, 10, 20, or more each. Further specific embodiments allow the relative position of the magnetic flux and coil conductor elements to remain substantially the same during the movement of the moveable body by positioning the magnets and coil conductor elements on the moveable body so that the relative position of the magnets and the coil conductor elements on the moveable body do not change with the movement of the moveable body.

    Abstract translation: 本发明的实施例涉及一种用于电磁致动的方法和装置。 根据本发明的电磁致动器的实施例可以包括固定主体和可变形膜或可移动的活塞状构件。 在活塞运动的情况下,在具体实施例中,活塞可由波纹膜片或波纹管支撑。 在各种实施例中,电磁致动器的全部或部分可以使用微细加工技术制造。 本发明的具体实施例可以包括向多个线圈导体元件提供磁通量的多个磁体,以便提供将力施加到电磁致动器的可移动主体部分的多个位置。 具体实施例可以包括与线圈导体元件阵列相互指向的磁体阵列,其中阵列可以包括2,5,10,20或更多个。 进一步的具体实施例允许通过将磁体和线圈导体元件定位在可移动体上,使得磁通量和线圈导体元件的相对位置在移动体的移动期间保持基本相同,使得磁体和线圈的相对位置 可移动体上的导体元件不随着可移动体的移动而变化。

    CAPACITIVE TRANSDUCER AND METHODS OF MANUFACTURING AND OPERATING THE SAME
    147.
    发明申请
    CAPACITIVE TRANSDUCER AND METHODS OF MANUFACTURING AND OPERATING THE SAME 有权
    电容式传感器及其制造和运行方法

    公开(公告)号:US20130049528A1

    公开(公告)日:2013-02-28

    申请号:US13591845

    申请日:2012-08-22

    Applicant: Che-heung KIM

    Inventor: Che-heung KIM

    Abstract: Provided are a capacitive transducer, and methods of manufacturing and operating the same. The capacitive transducer includes: a monolithic substrate comprising a first doping region, a second doping region that is opposite in conductivity to the first doping region, and a vibrating portion; and an empty space that is disposed between the first doping region and the vibrating portion. The vibrating portion includes a plurality of through-holes, and a material film for sealing the plurality of through-holes is disposed on the vibrating portion.

    Abstract translation: 提供一种电容式换能器及其制造和操作方法。 电容换能器包括:单片基板,包括第一掺杂区域,与第一掺杂区域的导电性相反的第二掺杂区域和振动部分; 以及设置在第一掺杂区域和振动部分之间的空白空间。 振动部分包括多个通孔,并且用于密封多个通孔的材料膜设置在振动部分上。

    MAGNETIC MICROPARTICLE AND METHOD FOR MANUFACTURING SUCH A MICROPARTICLE
    148.
    发明申请
    MAGNETIC MICROPARTICLE AND METHOD FOR MANUFACTURING SUCH A MICROPARTICLE 有权
    磁性微波和制造这种微波的方法

    公开(公告)号:US20110200434A1

    公开(公告)日:2011-08-18

    申请号:US13060662

    申请日:2010-09-17

    Abstract: A microparticle includes an oblong flexible tail able to propel the microparticle in a solution along a trajectory using beats transverse to the trajectory, the tail including at least one magnetic element such that the magnetic element causes beats of the tail under the action of an external alternating magnetic field non-collinear with the trajectory and a head mechanically connected to a proximal end of the tail. The microparticle includes at least one layer of material formed from one piece and including the tail and the head, the dimensions and/or shape of the head being selected such that the beats of the proximal end of the tail are limited with respect to the beats of the distal end of the tail and such that the head does not perform a complete revolution around an axis parallel to the trajectory under the effect of the external alternating magnetic field.

    Abstract translation: 微粒包括长方形柔性尾部,其能够使用横向于轨迹的搏动沿着轨迹将微粒推进到溶液中,尾部包括至少一个磁性元件,使得磁性元件在外部交替作用下引起尾巴的打击 与轨迹非共线的磁场和机械连接到尾端近端的磁头。 微粒包括至少一层材料,其由一个部件形成并包括尾部和头部,头部的尺寸和/或形状被选择为使得尾部的近端的节拍相对于节拍被限制 并且使得头部在外部交变磁场的作用下不围绕平行于轨迹的轴线执行完整的旋转。

    Self-assembling MEMS devices having thermal actuation
    150.
    发明授权
    Self-assembling MEMS devices having thermal actuation 有权
    具有热驱动的自组装MEMS器件

    公开(公告)号:US07749792B2

    公开(公告)日:2010-07-06

    申请号:US10558469

    申请日:2004-06-02

    Abstract: The present disclosure is broadly directed to a method for designing new MEMS micro-movers, particularly suited for, but not limited to, CMOS fabrication techniques, that are capable of large lateral displacement for tuning capacitors, fabricating capacitors, self-assembly of small gaps in CMOS processes, fabricating latching structures and other applications where lateral micro-positioning on the order of up to 10 μm, or greater, is desired. Principles of self-assembly and electro-thermal actuation are used for designing micro-movers. In self-assembly, motion is induced in specific beams by designing a lateral effective residual stress gradient within the beams. The lateral residual stress gradient arises from purposefully offsetting certain layers of one material versus another material. For example, lower metal layers may be side by side with dielectric layers, both of which are positioned beneath a top metal layer of a CMOS-MEMS beam. In electro-thermal actuation, motion is induced in specific beams by designing a lateral gradient of temperature coefficient of expansion (TCE) within the beams. The lateral TCE gradient is achieved in the same manner as with self-assembly, by purposefully offsetting the lower metal layers with layers of dielectric with respect to the top metal layer of a CMOS-MEMS beam. A heater resistor, usually made from a CMOS polysilicon layer, is embedded into the beam or into an adjacent assembly to heat the beam. When heated, the TCE gradient will cause a stress gradient in the beam, resulting in the electro-thermal actuation. Because of the rules governing abstracts, this abstract should not be used to construe the claims.

    Abstract translation: 本公开广泛地涉及用于设计新的MEMS微动幅器的方法,其特别适用于但不限于CMOS制造技术,其能够用于调谐电容器的大横向位移,制造电容器,小间隙的自组装 在CMOS工艺中,制造闭锁结构和其它应用,其中需要高达10μm或更大的横向微定位。 自组装和电热驱动的原理用于设计微动员。 在自组装中,通过在梁内设计横向有效残余应力梯度,在特定梁中引起运动。 侧向残余应力梯度是由有目的地抵消一种材料的某些层与另一种材料相抵消的。 例如,下金属层可以与电介质层并排,它们均位于CMOS-MEMS光束的顶部金属层的下方。 在电热驱动中,通过设计横梁内的温度膨胀系数(TCE)的横向梯度,在特定光束中感应运动。 横向TCE梯度以与自组装相同的方式实现,通过相对于CMOS-MEMS光束的顶部金属层有目的地抵消具有电介质层的下部金属层。 通常由CMOS多晶硅层制成的加热电阻器被嵌入光束或相邻组件中以加热光束。 加热时,TCE梯度将导致光束中的应力梯度,导致电热致动。 由于管理摘要的规则,本摘要不应用于解释索赔。

Patent Agency Ranking