Abstract:
PROBLEM TO BE SOLVED: To provide a method for manufacturing an electromechanical device, including at least one active element, on at least one substrate. SOLUTION: The method includes a step for manufacturing a heterogeneous substrate including a first part 1, an interface layer 8, and a second part 9. The first part 1 includes a buried zone 3 1 formed in a first monocrystalline material and the buried zone is formed of a second monocrystalline material 3 so as to make the buried zone selectively corrosive through an opening 20 connecting between the surface 1" and the buried zone, and a trench 26 connecting between the buried zone and the interface layer 8. The method further includes a step for forming at least one cavity 14 by etching at least a part of the buried zone 3 1 . COPYRIGHT: (C)2010,JPO&INPIT
Abstract:
Es werden verbesserte Mikrofone und Verfahren zu deren Herstellung angegeben, die auf Opferschichten mit lokal unterschiedlichen Ätzraten basieren.
Abstract:
A microelectromechanical systems device having support structures formed of sacrificial material that is selectively diffused with a dopant material or formed of a selectively oxidized metal sacrificial material. The microelectromechanical systems device includes a substrate having an electrode formed thereon. Another electrode is separated from the first electrode by a cavity and forms a movable layer, which is supported by support structures formed of a diffused or oxidized sacrificial material.
Abstract:
The invention relates to the production of a micromechanical component, comprising a substrate (10), made from a substrate material with a first doping type (p), a micromechanical functional structure arranged in the substrate (10) and a cover layer for the at least partial covering of the micromechanical functional structure. The micromechanical functional structure comprises regions (15; 15a; 15b; 15c; 730; 740; 830) made from the substrate material with a second doping type (n), at least partially surrounded by a cavity (50; 50a-f) and the cover layer comprises a porous layer (30) made from the substrate material.
Abstract:
In a method for manufacturing a semiconductor component having a semiconductor substrate, a flat, porous diaphragm layer and a cavity underneath the porous diaphragm layer are produced to form unsupported structures for a component. In a first approach, the semiconductor substrate may receive a doping in the diaphragm region that is different from that of the cavity. This permits different pore sizes and/or porosities to be produced, which is used in producing the cavity for improved etching gas transport. Also, mesopores may be produced in the diaphragm region and nanopores may be produced as an auxiliary structure in what is to become the cavity region.