Abstract:
As a jig material to use under plasma reaction for producing semiconductors, the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
As a jig material to use under plasma reaction for producing semiconductors the present invention provides a quartz glass having resistance against plasma corrosion, particularly corrosion resistance against fluorine-based plasma gases, and which is usable without causing anomalies to silicon wafers; the present invention furthermore provides a quartz glass jig, and a method for producing the same. A quartz glass containing 0.1 to 20 wt % in total of two or more types of metallic elements, said metallic elements comprising at least one type of metallic element selected from Group 3B of the periodic table as a first metallic element and at least one type of metallic element selected from the group consisting of Mg, Ca, Sr, Ba, Sc, Y, Ti, Zr, Hf, lanthanoids, and actinoids as a second metallic element, provided that the maximum concentration of each of the second metallic elements is 1.0 wt % or less.
Abstract:
A preform for a low loss fiber optic cable and method and apparatus for fabricating such a preform is provided. The method includes providing AlCl3 and CVD precursors and locally doping CaCl3. Alkali and/or alkaline earth fluxing agents can be introduced. The alkali and/or alkaline earths are doped along with the aluminum into the silica glass core.
Abstract:
A germanium-free co-doped silicate optical waveguide in accordance with the present invention includes a core material comprising silica, and oxides of aluminum, lanthanum, erbium and thulium, wherein the concentration of Er is from 15 ppm to 3000 ppm; Al is from 0.5 mol % to 15 mol %; La is less than 2 mol %; and Tm is from 150 ppm to 10000 ppm. In an exemplary specific embodiment the concentration of Al is from 4 mol % to 10 mol %; and the concentration of Tm is from 150 ppm to 3000 ppm. The core may further include F. In an exemplary embodiment, the concentration of F is less than or equal to 6 mol %. The waveguide may be an optical fiber, a shaped fiber or other light-guiding waveguides. An amplifier according to the present invention includes the optical fiber described above.
Abstract:
A co-doped silicate optical waveguide having a core including silica, and oxides of aluminum, germanium, erbium and thulium. The composition concentrations are: Er from 15 ppm to 3000 ppm; Al from 0.5 mol % to 12 mol %; Tm from 15 ppm to 10000 ppm; and Ge from 1 mol % to 20 mol %. In a specific embodiment, the concentration of Er is from 150 ppm to 1500 ppm; Al is from 2 mol % to 8 mol %; and Tm is from 15 ppm to 3000 ppm. A boron-less cladding surrounds the core.
Abstract:
The specification describes rare earth doped fiber amplifier devices for operation in the extended L-band, i.e. at wavelengths from 1565 nm to above 1610 nm. High efficiency and flat gain spectra are obtained using a high silica based fiber codoped with Er, Al, Ge, and P and an NA of at least 0.15.
Abstract:
An optical article including a core; at least one cladding layer; and a narrow fluorine reservoir between the core and the cladding layer. The fluorine reservoir has a higher concentration of fluorine than either the cladding layer or the core. One particular embodiment includes a core including a halide-doped silicate glass that comprises approximately the following in cation-plus-halide mole percent 0.25-5 mol % Al2O3, 0.05-1.5 mol % La2O3, 0.0005-0.75 mol % Er2O3, 0.5-6 mol % F, 0-1 mol % Cl.
Abstract translation:一种包括芯的光学制品; 至少一层包层; 以及在芯和包层之间的窄氟储存器。 氟储存器具有比包覆层或芯层更高的氟浓度。 一个具体实施方案包括包含卤化物掺杂的硅酸盐玻璃的核,其在阳离子加 - 卤化物摩尔百分比为0.25-5摩尔%Al 2 O 3,0.05-1.5摩尔%La 2 O 3,0.0005-0.75摩尔%Er 2 O 3,0.5-6 mol%F,0-1mol%Cl。
Abstract:
An improved sol-gel process is disclosed for producing a synthetic silica glass article, in which a sol is formed having a silica loading as high as 34 to 40%. This high loading is achieved by introducing an aqueous colloidal silica suspension into a silicon alkoxide solution and slowly stirring the mixture together, during which time the mixture hydrolyzes and the colloidal suspension is broken down by chemical reaction. This produces a hydrolyzed sol incorporating a suspension of very fine aggregates of colloidal particles, having particle sizes less than about 10 microns. The need for a stabilizing agent and/or continuous ultra-sonicating or violently stirring the sol is eliminated.
Abstract:
The specification describes fiber laser devices with cores containing aluminum in which the composition of the core is modified to minimize the core .DELTA., thereby allowing a larger core diameter, and a reduction in the fiber laser length by a factor equal to the square of the diameter difference. This result is achieved by compensation doping the core with phosphorus to offset the index-modifying contribution of aluminum.