Abstract:
A brake assembly for locking a vertical or horizontal slidable sash window or door within a track of a frame is disclosed. The track has an elongated base and a pair of spaced apart, opposed sidewalls extending perpendicular from the base. Each sidewall has an inner shoulder spaced from and parallel to the base. The assembly has a slider body having a central opening extending from a front face of the body to a rear face of the body. The slider body has a side opening in each side of the slider body and being in communication with the central opening. A pair of brake members are provided wherein one brake member is slidably positioned within a respective one of the side openings. A cam has a rear face and a front face, and is adapted to receive a pivot member mounted on either the sash window or door. The cam is positioned in the central opening and is adapted to be rotatable within the opening by the pivot member. The cam, slider body and brake members include cooperative structure for converting rotary motion of the cam into radial movement of the brake members through the side openings and axial movement of the cam and slider body to lock the brake assembly within the track.
Abstract:
A power operating system for opening and closing a vehicle liftgate has a pair of drive units supported on the vehicle roof and connected to the liftgate for opening and closing the liftgate. Each drive unit includes a bracket that is secured to the vehicle body for supporting several parts including a reversible electric motor, a gear unit and a housing having a forward linear track and a contiguous rearward curved track. The electric motor drives a segmented drive linkage disposed in the housing via the gear unit. The segmented drive linkage includes an elongated arcuate link that is guided by the rearward curved track, a linear rack link that is guided by the forward linear track, and an intermediate link that has an outer end that is pivotally attached to an inner end of the arcuate link and an inner end that is pivotally attached to a midpoint of the linear rack link. The outboard end of the arcuate link is pivotally connected to the liftgate to open and close the liftgate as the arcuate link is extended and retracted by the linear rack link being driven by the electric motor.
Abstract:
A brake assembly for locking a vertical or horizontal slidable sash window or door within a track of a frame is disclosed. The track has an elongated base and a pair of spaced apart, opposed sidewalls extending perpendicular from the base. Each sidewall has an inner shoulder spaced from and parallel to the base. The assembly has a slider body having a central opening extending from a front face of the body to a rear face of the body. The slider body has a side opening in each side of the slider body and being in communication with the central opening. A pair of brake members are provided wherein one brake member is slidably positioned within a respective one of the side openings. A cam has a rear face and a front face, and is adapted to receive a pivot member mounted on either the sash window or door. The cam is positioned in the central opening and is adapted to be rotatable within the opening by the pivot member. The cam, slider body and brake members include cooperative structure for converting rotary motion of the cam into radial movement of the brake members through the side openings and axial movement of the cam and slider body to lock the brake assembly within the track.
Abstract:
A control mechanism for use with a door closer having a pinion shaft. The control mechanism comprises a coiled torsion spring around the shaft with a free end of the spring lying along part of a strap. The strap is connected to the shaft and normally held in tension, in use, by its connection to a movable hydraulic piston of the door closer which is biased in one direction. On normal closing of the door, in use, the strap remains tensioned and the spring is thus prevented from tightening on the shaft. However, if an external closing force is applied to the door, the strap becomes untensioned, thereby allowing the spring to tighten about the shaft to retard its angular door closing movement.
Abstract:
A combined sliding and pivot window assembly including a plurality of sashes separately pivotally mounted on substantially C-shaped sash support frames that are slidably fixed on rails provided on an outer window frame. The window assembly includes combined sliding and locking mechanisms that allow the C-shaped sash support frames to slide on the rails when the sashes are pivotally closed, or to be locked on the rails when the sashes are pivotally opened, or to be pushed to one side in the outer window frame while allowing all the sashes to be pivotally opened; pivot mechanisms that allow the sashes to be pivotally opened and stay at any desired open position relative to the sash support frames; and elastic two-end locking mechanisms that are mounted in a vertical member of the sashes to lock the sashes at upper and lower ends to the sash support frames simply by laterally shifting an external adjusting key of the two-end locking mechanism. The combined sliding and pivot window assembly is therefore safer and more convenient for use.
Abstract:
A time delay release mechanism has a brake actuator including an actuation member movable between engaged and released positions. The actuation member, when in the engaged position, operatively engages a fire barrier for preventing closure thereof. The actuation member, when in the released position, is operatively disengaged from the fire barrier such that the release mechanism does not prevent closure thereof. The brake actuator includes an actuation driver which, when receiving electrical power, moves the actuation member to the released position. A timer, when receiving electrical power or when power thereto is interrupted for a duration less than a predetermined time period, disengages from the actuation member allowing the actuation driver, when power thereto is initially interrupted, to move the actuation member to the engaged position. The timer engages the actuation member, when power to the timer is interrupted for a duration greater than the predetermined time period, to move the actuation member to the released position thereby overriding the actuation driver to allow closure of the fire barrier. The timer disengages from the actuation member when power to the timer is restored and the actuation driver retains the actuation member in the released position when power to the actuation driver is restored, thereby automatically resetting the brake actuator and timer.
Abstract:
A mechanism for controlling the raising and lowering of a door comprises a speed reduction gearing, a high speed input shaft and a low speed output shaft connected to the gearing, a governor mounted on the input shaft for regulating the input shaft's rotational speed whereby also regulating the output shaft's rotational speed, a first mechanism for operatively connecting the input shaft to a second mechanism for rotating the input shaft, a mechanism for operatively connecting the output shaft to a slatted retractable door, a brake for preventing rotation of the output shaft, and a release-mechanism the brake to permit rotation of the output shaft.
Abstract:
An arrangement for automatically engaging and disengaging a brake on rotating apparatus comprising a rotatable brake drum and a pair of brake shoes pivotally mounted for engagement with the drum. Free ends of the brake shoes are urged together by spring forces bringing the brake shoes into braking engagement with the drum. A brake release mechanisms includes a pivoted release member with a cone-shaped stud slidably connected thereto. The brake shoes are disengaged by rotating the release member which forces the stud between the brake shoe free ends and separates the brake shoes from the drum. The conical stud and its slidable connection to the pivoted release member simplifies assembly and maintenance of the arrangement.
Abstract:
A security enclosure includes an access gate comprising at least one rigid barrier which can be retracted or advanced by remotely-actuated power means for opening and closing the gate. A support and drive structure which supports the driven end of the barrier includes upper drive means which provide positive drive connections to an upper surface of the barrier through downward pressure on at least two laterally-separated points and corresponding lower drive means which provide positive drive connections to a lower surface of the barrier and support the barrier on at least two laterally-separated points, with the upper and lower drive means being driven by a common power source and connecting drive means to open and close the gate. Remote switching means are provided to operate the drive means and latch means to open and close the gate. The upper and lower drive means can be rollers driven by belt drives. The barrier and/or fence can include framework structures of tubular stock, the tubes being interconnected to permit the insertion of reinforcing cables.
Abstract:
An electromechanical device for activating a rotating post that moves the leaf of a swinging door on a vehicle, especially a mass-transit vehicle. An electric motor activates the column by means of an intermediate worm gear. The motor outtake shaft is coupled to the worm-gear intake shaft. A worm wheel is coupled to the worm-gear outtake shaft, which activates the rotating post. The electromechanical activating device contains an emergency mechanism for uncoupling the worm-gear outtake shaft from the worm wheel in relation to their rotation. The mechanism incorporates a coupling that can be disengaged between the outtake shaft and the worm wheel, which is mounted over it coaxially. The mechanism also involves several balls situated such that they can be forced into recesses in the outtake shaft while simultaneously engaging axial grooves in the inner surface of the worm wheel. The end of the outtake shaft that is remote from the rotating post has an axial bore that the recesses lead into and that accommodates a cylindrical slide. The balls rest against the surface of the slide. The slide has an initial longitudinal section with a diameter that ensures that a prescribed volume of each ball will project out of the recesses. The slide also has an adjacent longitudinal section with a diameter that continuously decreases to a length such that the balls will completely enter the recesses. A mechanism displaces the slide to a prescribed extent against the force of a compression spring.