Abstract:
An electron microscope (10) is adapted to enable spectroscopic analysis of a sample (16). A parabolic mirror (18) has a central aperture (20) through which the electron beam can pass. The mirror (18) focuses laser illumination from a transverse optical path (24) onto the sample, and collects Raman and/or other scattered light, passing it back to an optical system (30). The mirror (18) is retractable (within the vacuum of the electron microscope) by a sliding arm assembly (22).
Abstract:
Es wird bereitgestellt ein Optiksystem, insbesondere Mikroskop, mit einer Optikeinheit (17) und einem Kollimator (1), der in einem Strahlengang des Optiksystems der Optikeinheit (17) vor- oder nachgeordnet ist, wobei die Optikeinheit (17) einem dem Strahlengang zugeführten Strahlenbündel einen vorbestimmten Farblängsfehler einprägt und das Strahlenbündel auf den Kollimator (1) als divergierendes oder paralleles Strahlenbündel trifft und von diesem in ein paralleles oder konvergierendes Strahlenbündel umgewandelt wird, wobei der Kollimator (1) zumindest eine Linse (L) sowie einen gekrümmten Spiegel (4) aufweist, der den Strahlengang so faltet, daß das zugeführte Strahlenbündel die Linse (4) zweimal durchläuft.
Abstract:
A spectrometer (20) is formed from two supports (10, 30). A first of the supports (10) has a diffraction grating (11) for dispersing light, source locating means (12) for locating a source of said light, and detector locating means (13) for locating a detector of said dispersed light. The other support is a mirror support (30) having a body and at least two reflective surfaces (31, 32) integrally formed with the body of the support (30). In preferred embodiments, one of the reflective surfaces may be divided into segments (32, 32'; 33). The spectrometer (20) can be cheaply mass-produced. In aspects of the invention, the distances between the source, detector and dispersive means are accurately fixed during manufacture in a simple and inexpensive manner.
Abstract:
A wavelength discriminator designed to collect broadband, multiple wavelength input energy, to isolate specific narrow bands of interest, and to image such narrow bands of interest upon closely spaced, separate detectors. This discriminator comprises optical devices (22, 18) for directing incoming radiant energy of a certain quality and involving a wide range of wavelengths through first (26a) and second (26b) wavelength selective reflectors separated by a medium that transmits the wavelengths of interest. The wavelength selective reflectors in accordance with this invention are in a non-parallel configuration and disposed in a double pass geometrical arrangement wherein energy of a certain wavelength reflected from the second wavelength selective reflector (26b) passes back through the first wavelength selective reflector (26a), with the energy from the first and second wavelength reflectors thereafter being directed onto respective detectors (32a and 32b). An embodiment involving a third wavelength selective reflector (26c) grouped with the first and second reflectors may be utilized, wherein energy of a different wavelength reflected from the third wavelength selective reflector passes back through both the second and first wavelength selective reflectors, with the selected wavelengths thereafter falling upon three separate detectors (32a, 32b and 32c) of the array.
Abstract:
Un discriminateur de longueurs d'ondes capte de l'énergie à large bande et à longueurs d'ondes multiples, isole des bandes étroites spécifiques d'intérêt et projette une image de ces bandes étroites d'intérêt sur des détecteurs séparés très rapprochés. Le discriminateur comprend des dispositifs optiques (22, 18) de guidage d'une certaine qualité d'énergie rayonnante qu'il reçoit et ayant une large bande de longueurs d'ondes à travers un premier (26a) et un deuxième (26b) réflecteur sélectif de longueurs d'ondes séparés par un milieu qui transmet les longueurs d'ondes d'intérêt. Les réflecteurs sélectifs de longueurs d'ondes sont disposés selon un agencement géométrique non-parallèle et à double passage, de sorte qu l'énergie ayant une certaine longueur d'ondes réfléchie par le deuxième réflecteur sélectif de longueurs d'ondes (26b) traverse à nouveau le premier réflecteur sélectif (26a), l'énergie réfléchie par les premier et deuxième réflecteurs étant ensuite dirigée vers des détecteurs respectifs (32a et 32b). On peut aussi utiliser un autre mode de réalisation dans lequel un troisième réflecteur sélectif de longueurs d'ondes (26c) est ajouté aux deux autres réflecteurs; l'énergie ayant une longueur d'ondes différente réfléchie par le troisième réflecteur sélectif traverse à nouveau les premier et deuxième réflecteurs sélectifs, et les longueurs d'ondes sélectionnées tombent ensuite sur trois détecteurs séparés (32a, 32b et 32c) de l'agencement.
Abstract:
피검체의생체정보를측정하는생체센서및 이를포함하는생체정보분석시스템이개시된다. 개시된생체센서는피검체의관심영역에대해광을조사하는광원부와상기피검체로부터배출되는산란광의진행방향을유도하는시준기를포함하며, 상기시준기는상기광원부로부터조사되는광이상기시준기를통과할수 있도록상기시준기의일측부에형성된윈도우;를포함할수 있다. 그리고, 광원으로부터생성되는광의초점거리를조절하는포커싱요소를포함할수 있으며, 상기포커싱요소에의하여상기시준기의상기윈도우에광초점이맞춰질수 있다.
Abstract:
본명세서는보다정확한출력을포함할수 있는광대역색도계를제공하는방법에관한다양한실시예들을설명한다. 일실시예에서, 분광계또는분광기등의협대역장비는광대역색도계의보정에사용될수 있고, 따라서더 정확한출력이제공될수 있다. 일실시예에서, 광대역색도계및 협대역분광기로구성된광 테스트장비는보다정확하게보정된광대역색도계를제공하는데사용될수 있다. 예로서, 광대역색도계및 협대역분광기로구성된하이브리드시스템인스펙트럼카메라는광대역색도계및 협대역분광기에의한동시테스트에사용될수 있다. 통시테스트에의해광대역색도계의정확한보정이달성될수 있다. 본명세서는협대역다중채널분광계를갖는광대역세 채널색도계를특징화하는수학적모델을더 기술한다.
Abstract:
분광(分光)모듈(1)에서는 광검출소자(5)가 중간기판(81)에 실장(實裝)되어 있기 때문에, 기판(2)의 전면(2a)과 중간기판(81)과의 사이에 개재시킨 광학수지제(63)가 광검출소자(5)의 광통과구멍(50) 내에 진입하는 것이 방지된다. 따라서, 굴절이나 산란 등의 발생을 방지하여 기판(2) 및 분광부(4)에 광(L1)을 적절히 입사시킬 수 있다. 게다가, 중간기판(81)의 체적이 기판(2)의 체적보다도 작게 되어 있기 때문에, 중간기판(81)은 분광모듈(1)의 환경온도가 변화했을 때에 기판(2)보다도 광검출소자(5)에 가까운 상태에서 팽창·수축하게 된다. 따라서, 분광모듈(1)의 환경온도의 변화에 기인하여 광검출소자(5)의 범프(bump)접속이 파단되는 것을 광검출소자(5)가 기판(2)에 실장되는 경우에 비해 확실히 방지할 수 있다.
Abstract:
In a spectroscopic module (1), a light absorption layer (6) having a light passing hole (6a) through which light (L1) travelling to a spectroscopic section (3) passes and a light passing hole (6b) through which light (L2) travelling to a light detecting section (4a) of a light detecting element (4) passes is integrally formed by patterning. Therefore, the displacement of the relative positional relationship between the light passing hole (6a) and the light passing hole (6b) can be prevented from occurring. Moreover, the light absorption layer (6) reduces the occurrence of stray light and absorbs the stray light, so that the stray light can be prevented from entering the light detecting section (4a) of the light detecting element (4). Accordingly, the spectroscopic module (1) enables improved reliability.
Abstract:
PURPOSE: A optical system for simultaneous detecting calibration system and test signal in optical spectrum analyzer are provided to supply a concurrent calibration signal and detect a test signal in an optical spectrum analyzer that is useful in analyzing optical telecommunications transmission lines. CONSTITUTION: The optical system(10) has a collimating optic(12), an optical axis(14), and a focal plane(16). A fiber array(18) has first and second pairs of optical fibers(22,24) with each optical fiber pair having an input optical fiber(26,28) and an output optical fiber(30,32). The input optical fiber(26) of the first pair of fibers(22) is coupled to receive the optical signal under test(34). The output optical fiber(30) of the pair is coupled to test signal detector(36). The input optical fiber(28) of the second pair of fibers(24) is connected to an optical calibration source(38) that produces a spectral output in response to shifts in emission or absorption energy levels in atomic or molecular species. The output optic fiber(32) of the pair is coupled to a calibration source detector(40). An optical tuning element drive motor(44) is connected to the optical tuning element(42) to tune the optical system(10) through the spectral range.