Abstract:
An apparatus and method for EUV light production is disclosed which may comprise a laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprising a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, comprising: a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, wherein the target stream track results from the imaging speed of the camera being too slow to image individual plasma formation targets forming the target stream imaged as the target stream track; a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site. At least one target crossing detector may be aimed at the target track and detecting the passage of a plasma formation target through a selected point in the target track. A drive laser triggering mechanism utilizing an output of the target crossing detector to determine the timing of a drive laser trigger in order for a drive laser output pulse to intersect the plasma initiation target at a selected plasma initiation site along the target track at generally its closest approach to the desired plasma initiation site. A plasma initiation detector may be aimed at the target track and detecting the location along the target track of a plasma initiation site for a respective target. An intermediate focus illuminator may illuminate an aperture formed at the intermediate focus to image the aperture in the at least one imaging device. The at least one imaging device may be at least two imaging devices each providing an error signal related to the separation of the target track from the vertical centerline axis of the image of the intermediate focus based upon an analysis of the image in the respective one of the at least two imaging devices. A target delivery feedback and control system may comprise a target delivery unit; a target delivery displacement control mechanism displacing the target delivery mechanism at least in an axis corresponding to a first displacement error signal derived from the analysis of the image in the first imaging device and at least in an axis corresponding to a second displacement error signal derived from the analysis of the image in the second imaging device.
Abstract:
A radiation image detector includes an up-conversion phosphor layer for emitting fluorescence by irradiation with infrared light, a first electrode layer for transmitting the infrared light, the fluorescence and radiation carrying a radiation image, a photoconductive layer for recording, a charge storage portion, a photoconductive layer for readout, and a second electrode layer for transmitting the infrared light and the readout light. Radiation is recorded as latent image charge in the charge storage portion. The electric charge is read out from the charge storage portion by irradiating the photoconductive layer for readout with the readout light from the second electrode layer side. The up-conversion phosphor layer is irradiated with the infrared light from the second electrode layer side and remaining charge in the vicinity of the first electrode layer is erased by fluorescence emitted from the up-conversion phosphor layer by irradiation with the infrared light.
Abstract:
A laser produced plasma (“LPP”) extreme ultraviolet (“EUV”) light source control system comprises a target delivery system adapted to deliver moving plasma initiation targets and an EUV light collection optic having a focus defining a desired plasma initiation site, a target tracking and feedback system comprising: at least one imaging device providing as an output an image of a target stream track, and a stream track error detector detecting an error in the position of the target stream track in at least one axis generally perpendicular to the target stream track from a desired stream track intersecting the desired plasma initiation site.
Abstract:
Disclosed is a measuring apparatus for measuring the position, size and/or shape of a light convergent point of an EUV light source. In one preferred form, the apparatus includes a light receiving device for receiving EUV light diverging from a light convergent point, an optical system for directing the EUV light toward the light receiving device, a light blocking member disposed in a portion of light path for the EUV light and having a plurality of openings, and a system for detecting a spatial distribution of the EUV light at the light convergent point, on the basis of reception of EUV light by the light receiving device. In another preferred from, the apparatus includes a light receiving device for receiving EUV light diverging from a light convergent point, a gas filter disposed in a portion of a light path of the EUV light and being filled with a predetermined gas, and a system for detecting a spatial distribution of the EUV light at the light convergent point, on the basis of the reception of EUV light by the light receiving device.
Abstract:
The light of a broad energy band can be observed by reflecting the light of the broad energy band, for example, the light from the visible light region to the x-ray region at a high reflectance respectively, by a composite telescope including a normal incidence optical system and an oblique incidence optical system. A broadband telescope comprise an oblique incidence optical system unit in which the light is obliquely incident on a surface part for reflecting the incident light, a normal incidence optical system unit in which the light is substantially vertically incident on a surface part for reflecting the incident light, and an analyzer for spectrum analysis of the light reflected by the surface part of the obliquely incidence optical system unit and the light reflected by the surface part of the normal incidence optical system unit.
Abstract:
An electromagnetic reflector having a multilayer structure where the electromagnetic reflector is configured to reflect multiple electromagnetic frequencies.
Abstract:
This invention relates to novel methods of producing flat and curved optical elements with laterally and depth graded multilayer thin films, in particular multilayers of extremely high precision, for use with soft and hard x-rays and neutrons and the optical elements achieved by these methods. In order to improve the performance of an optical element, errors in d spacing and curvature are isolated and subsequently compensated.
Abstract:
A multi-layer reflection mirror for soft X-ray to vacuum ultraviolet ray, comprises a substrate, a plurality of first layers, and a plurality of second layers formed on the substrate alternately with the first layers. The first layer primarily consists of at least one of single elements, such as ruthenium or of a boride, carbide, silicide, nitride oxide of a transition metal. The second layer primarily consists of at least one of compounds of carbon, silicon (e.g. carbide, nitride and oxide of silicon), boron (e.g. carbide, nitride and oxide of boron), beryllium (e.g. carbide, nitride and oxide of beryllium) and aluminum (e.g. carbide, nitride and oxide of aluminum).
Abstract:
A method is described for the production of thin boron and titanium/boron films by magnetron sputter deposition. The amorphous boron films contain no morphological growth features, unlike those found when thin films are prepared by various physical vapor deposition processes. Magnetron sputter deposition method requires the use of a high density crystalline boron sputter target which is prepared by hot isostatic pressing. Thin boron films prepared by this method are useful for ultra-thin band pass filters as well as the low Z element in low Z/high Z mirrors which enhance reflectivity from grazing to normal incidence.
Abstract:
A focusing X-ray crystal monochromator in which one or more crystal layers having different spacings of lattice plane are stacked on a crystal base. Due to different spacings of lattice plane, the angle of reflection and diffraction of a diverging incident X-ray beam can be so changed that the beam takes a parallel or focusing direction for monochromatization. Thus, the monochromator of the present invention can be applied to the X-ray lithography for transferring a pattern of high resolution or the X-ray analysis such as the fine X-ray diffraction.