Abstract:
The invention relates to a method of aligning a flexible foil sheet having a general first foil sheet length direction to form stacked foil sheet layers on a reel having a reel diameter. The method comprises providing multiple alignment markers in the foil sheet, distanced conform the reel diameter and each having an mark length direction transverse to the first foil sheet length direction, to form protrusions and corresponding recesses on opposite faces of the foil sheet; winding the foil sheet on the reel in the first foil sheet length direction of the foil sheet; and co-aligning the alignment markers to have protrusions of one mark matching with a recess of another mark, so as to block relative movement of the stacked foil sheet layers in the first foil sheet length direction. Preferably, the foil sheet layers are provided with device functionality to form a stacked foil sheet layered device.
Abstract:
Systems and methods for monitoring power in a conductor. A flex circuit may include multiple layers including a voltage sensing layer, a coil layer, and a ground layer. The coil layer includes traces that form a coil structure around a conductor when the flex circuit is wrapped around the conductor. The coil layer generates a voltage that may be integrated to determine a current in the conductor. When the flex circuit is wrapped around the conductor, the voltage sensing layer is closest to the conductor. The voltage sensing layer forms a capacitor with the conductor. Using an adjustable capacitive voltage divider, the voltage of the conductor may be determined from a voltage signal received from the voltage sensing layer.
Abstract:
A flexible high density interconnect structure is provided by extending the high density interconnect structure beyond the solid substrate (14) containing the chips (20) interconnected thereby. During fabrication, the flexible portion (39) of the high density interconnect structure is supported by a temporary interconnect support to facilitate fabrication of the structure in accordance with existing fabrication techniques. Subsequently, that temporary support structure may be removed or may remain in place if it is sufficiently flexible to impart the desired degree of flexibility to that portion of the high density interconnect structure. Methods of fabrication are also disclosed.
Abstract:
Described herein is a catheter and method for catheter assembly. The flexible substrate includes a number of layers, where each layer has a number of printed wires. The printed substrate is environmentally protected. The printed substrate is rolled and inserted into the catheter. Connectors are attached to each end of the rolled substrate. The connectors are connected to sensors at a distal end of the catheter and with electrical cards or a cable connector at a proximate end of the catheter. At least one layer of the substrate is connected to a coil in a magnetic sensor. A layer in which the traces are shorted in the distal end is used to measure a magnetic interference. These measurements are used by a processor or hardware to cancel out the magnetic interference effect on the other layers. In an implementation, another printed substrate can be wrapped within the catheter shaft and used for non-magnetic type sensors.
Abstract:
A method of 3D printing a flexible electronic device comprises depositing one or more conductive filaments in a predetermined pattern on a substrate, where the one or more conductive filaments comprise a conductive ink formulation comprising a polar solvent, a thermoplastic elastomer, and a plurality of electrically conductive particles. The polar solvent is evaporated to dry the one or more conductive filaments, thereby forming a 3D printed conductive structure on the substrate.
Abstract:
A dynamically flexible article or device, such as a wristband, an armband, a rollable e-reader, or a belt, includes a flexible electronic component (e.g., a flexible display) and a support structure coupled to the flexible electronic component. The support structure is configured to limit bending of the flexible electronic component to a range within a bending tolerance of the flexible electronic component.
Abstract:
A sensor assembly has a substrate with a first surface and a second surface opposite the first surface, at least one analyte sensor positioned on at least one of the first surface and the second surface of the substrate, and at least one electrical contact positioned on the substrate in electrical communication with a corresponding one of the at least one analyte sensor. The substrate is configured to define a tube having an interior surface, and an exterior surface. At least a portion of the first surface of the substrate defines the interior surface of the tube, and the at least one analyte sensor is disposed on at least one of the interior surface and the exterior surface of the tube.
Abstract:
An apparatus comprising: an elongate structure comprising integrated electronic circuitry providing at least an electronic user interface wherein the elongate structure is flexible and is configured to be flexed lengthwise by a user to form a looped configuration in which the elongate structure forms at least one lengthwise loop about an axis and in which at least one electrical connection for the electronic circuitry is formed where a first portion of the elongate structure and a second portion of the elongate structure contact.
Abstract:
A wire harness has a wiring film which includes an insulating substrate (10), a plurality of wires (20) arranged on a surface of the insulating substrate (10), and an insulating covering (30) that coats the surface of the insulating substrate (10) so as to cover the wires (20). The wire harness is shaped by winding the wiring film around a longitudinal axis of a core (C), which is paralleled to the longitudinal axis (L) of the wires.