Abstract:
Techniques for efficiently setting up inspection, metrology, and review systems for operating upon semiconductor wafers are described. Specifically, this involves setting up recipes that allows each system to accurately inspect semiconductor wafers. The invention gathers pertinent information from these tools and presents the information to users in a way that greatly reduces the time required to complete a recipe. One system embodiment includes an inspection system and a review station that is communicatively linked such that the review station can read from and write to an entire set of data stored at the inspection system. The set of data includes image files of features detected by the inspection system.
Abstract:
Disclosed is a method of inspecting a sample. The sample is scanned in a first direction with at least one particle beam. The sample is scanned in a second direction with at least one particle beam. The second direction is at an angle to the first direction. The number of defects per an area of the sample are found as a result of the first scan, and the position of one or more of the found defects is determined from the second scan. In a specific embodiment, the sample includes a test structure having a plurality of test elements thereon. A first portion of the test elements is exposed to the beam during the first scan to identify test elements having defects, and a second portion of the test elements is exposed during the second scan to isolate and characterize the defect.
Abstract:
The present invention includes a system for localization of defects in test samples. A sample is scanned using a particle beam. Some particles interact with conductive elements and may cause the emission of x-rays. Other particles can pass through the sample entirely and generate a current that can be measured. A higher current generated indicates less conductive material at the scan target that may mean a void, dishing, or erosion is present. Localization of a defect can be confirmed using an x-ray emission detector.
Abstract:
A system is provided herein for inspecting a specimen. In one embodiment, the system may include a dual-channel microscope, two illuminators, each coupled for illuminating a different channel of the dual-channel microscope and two detectors, each coupled to a different channel of the dual-channel microscope for acquiring images of the specimen. Means are provided for separating the channels of the dual-channel microscope, so that the two detectors can acquire the images of the specimen at substantially the same time. In one embodiment, the channels of the dual-channel microscope may be spectrally separated by configuring the two illuminators, so that they produce light in two substantially non-overlapping spectral ranges. In another embodiment, the channels of the dual-channel microscope may be spatially separated by positioning the two detectors, so that the illumination light do not overlap and the fields of view of the two detectors do not overlap within a field of view of an objective lens included within the system.
Abstract:
Apparatus and methods are provided for predicting a plurality of unknown parameter values (e.g. overlay error or critical dimension) using a plurality of known parameter values. In one embodiment, the method involves training a neural network to predict the plurality of parameter values (114, 700, 800, 900). In other embodiments, the prediction process does not depend on an optical property of a photolithography tool. Such predictions may be used to determine wafer lot disposition (114).
Abstract:
An objective for imaging specimens is disclosed. The objective receives light energy from a light energy source configured to provide light energy in a wavelength range of approximately 480 to 660 nanometers, employs a Mangin mirror arrangement in conjunction with an immersion liquid to provide a numerical aperture in excess of 1.0 and a field size in excess of 0.05 millimeters, where every element in the objective has a diameter of less than approximately 40 millimeters.
Abstract:
Various methods, carrier media, and systems for detecting defects on a specimen using a combination of bright field channel data and dark field channel data are provided. One computer-implemented method includes combining pixel-level data acquired for the specimen by a bright field channel and a dark field channel of an inspection system. The method also includes detecting defects on the specimen by applying a two-dimensional threshold to the combined data. The two-dimensional threshold is defined as a function of a threshold for the data acquired by the bright field channel and a threshold for the data acquired by the dark field channel.
Abstract:
Various computer-implemented methods are provided. One computer-implemented method for determining information about a defect detected on a wafer after an immersion lithography (IL) process is performed on the wafer includes comparing inspection results for the defect to data in a defect library for different types of IL defects and determining the information about the defect based on results of the comparison. One computer-implemented method (figure 4) for binning defects detected on a wafer after an IL process is performed on the wafer includes comparing one or more characteristics of the defects (48) to one or more characteristics of IL defects (50) and one or more characteristics of non-IL defects (52). The method also includes binning the defects having one or more characteristics that substantially match the one or more characteristics of the IL defects and the non-IL defects in different groups.
Abstract:
Methods and systems for detecting pinholes in a film formed on a wafer or for monitoring a thermal process tool are provided. One method for detecting pinholes in a film formed on a wafer includes generating output responsive to light from the wafer using an inspection system. The output includes first output corresponding to defects on the wafer and second output that does not correspond to the defects. This method also includes detecting the pinholes in the film formed on the wafer using the second output. One method for monitoring a thermal process tool includes generating output responsive to light from a wafer using an inspection system. The output includes the first and second output described above. The wafer was processed by the thermal process tool prior to generating the output. The method also includes monitoring the thermal process tool using the second output.
Abstract:
Embodiments of the invention include a scatterometry target for use in determining the alignment between substrate layers. A target arrangement is formed on a substrate and comprises a plurality of target cells. Each cell has two layers of periodic features constructed such that an upper layer is arranged above a lower layer and configured so that the periodic features of the upper layer have an offset and/or different pitch than periodic features of the lower layer. The pitches are arranged to generate a periodic signal when the target is exposed to an illumination source. The target also includes disambiguation features arranged between the cells and configured to resolve ambiguities caused by the periodic signals generated by the cells when exposed to the illumination source.