Abstract:
The present invention relates to a method of manufacturing a graphene nano-composite having an urchin-like copper oxide therein by using a simple hydrothermal synthetic method under normal pressure, and provides a method of manufacturing an urchin-like structure made of nanometer size needles through a chemical reaction while stirring copper acetate at a high temperature by using graphene oxide as a stabilizer and a mold. The nano-composite manufactured thereby exhibits an excellent antibacterial property against Staphylococcus, which is a gram positive bacillus, and E. coli, which is a gram negative bacillus, which is caused by the copper oxide nano-structure having a large surface area. According to the present invention, a copper oxide nano-structure having an excellent antibacterial property is easily manufactured by a hydrothermal synthetic method, and has an advantage of being manufactured at an economic manufacturing cost and a simple reaction condition.
Abstract:
본 발명은 1-D 인트린직 컨덕팅 고분자 나노물질의 대량 생산방법에 관한 것으로, 더욱 상세하게는 유기산으로 이루어진 도펀트를 증류수에 분산하여 유기산 수용액을 제조하는 분산단계, 상기 분산단계를 통해 제조된 유기산 수용액에 인트린직 컨덕팅 고분자 단량체를 혼합하는 혼합단계, 상기 혼합단계를 통해 제조된 혼합물에 개시제를 첨가하여 인트린직 컨덕팅 고분자 나노물질을 중합하는 중합단계 및 상기 중합단계를 거친 혼합물에 물 또는 유기용매를 첨가한 후에 인트린직 컨덕팅 고분자 나노물질을 분리하는 분리단계로 이루어진다. 상기의 과정을 통해 제조된 인트린직 컨덕팅 고분자 나노물질은 분해온도가 200℃ 이상이고, 높은 전기전도성을 나타내기 때문에, 정전기를 분산하거나 전자기를 차폐하는 소재에 첨가제로 사용될 수 있다.
Abstract:
본 발명은 이산화티타늄 나노로드가 결합된 그래핀 시트의 제조와 가시광에 반응하는 광촉매로서의 응용에 관한 것으로, 비가수분해 졸-겔 반응을 통하여 산화 그래핀 층위에 이산화티타늄 나노로드를 성장시키는 방법을 제공하며, 광촉매로 이용 하였을 경우 가시광 하에서 높은 효율을 나타내므로 차세대 광촉매로의 응용 가능성을 제시하였다. 본 발명에 따르면, 올레일 아민 용액에 분산된 산화 그래핀에 이산화티타늄전구체의 도입은 비가수분해 졸-겔 반응을 유도하며, 추가적인 과정 없이 공정상 간편하게 이산화티타늄 나노로드와 그래핀 시트가 결합할 수 있는 장점을 가진다. 더욱이, 이산화티타늄 전구체의 농도를 바꿈으로써 그래핀 시트 위의 이산화티타늄 밀도를 용이하게 조절할 수 있다. 이렇게 제조된 균일한 이산화티타늄 나노로드가 결합된 그래핀 시트는 가시광선 하의 광촉매 작용에서도 상업화된 이산화티타늄 입자보다 우수한 성능을 보였다.
Abstract:
PURPOSE: A method for improving a silica-polyaniline care-shell nano particle thin film having improved conductivity is provided to improve electrical stability by being used as a capacitor. CONSTITUTION: Silica particles are distributed onto aqueous solution. Surfaces of the silica particles are reformed. A negative charge is generated on the silica particles by the reformation. An anilinium ion is formed on the aqueous solution. A positive charge is generated on the anilinium ion. [Reference numerals] (AA) Current density (Ag^-1); (BB) Potential (V, vs Ag/AgCL); (CC) 18nm silica poly anilinium core shell film, -30°C; (DD) 35nm silica poly anilinium core shell film, -30°C; (EE) 63nm silica poly anilinium core shell film, -30°C; (FF) 130nm silica poly anilinium core shell film, -30°C; (GG) 18nm silica poly anilinium core shell film, -22.5°C
Abstract:
PURPOSE: A fabrication method of a filter for removing heavy metal ions is provided to improve a reusing rate of a filter for removing heavy metal ions and an efficiency of the filter compared to mass. CONSTITUTION: A fabrication method of a filter for removing heavy metal ions includes the steps of: injecting an oxidizer into an anodized aluminum oxide hard template; manufacturing copolymer nanotubes by injecting monomers of two conductive polymers into the hard template based on a vapor deposition-polymerization method; and recovering an efficiency of the filter by treating the filter with a weak acid solution. [Reference numerals] (AA) Amount of absorbed heavy metal ions (mass%); (BB) the number of use (times)
Abstract:
본 발명은 잉크젯 프린팅을 이용한 그래핀 시트 패턴의 제조와 광대역 다이폴 안테나로의 응용에 관한 것으로, 흑연 결정으로부터 화학적 박리 방법을 통해 제조된 수분산 산화 그래핀 나노 입자 용액을 잉크젯 프린터용 잉크로 사용하고, 컴퓨터 프로그램으로 잉크젯 프린터를 제어하여 상기 산화된 그래핀 필름을 원하는 형태로 출력한 뒤, 산화 그래핀 필름을 환원제가 포함되어 있는 기상증착 반응기 내부에 위치하여 진공 상태의 적정 온도 하에서 환원반응을 통해 그래핀 시트의 패턴을 제조하였을 뿐만 아니라, 다이폴 형태의 그래핀 시트를 안테나 분석기에 연결하여 광대역 다이폴 안테나의 성능을 제시한다. 본 발명에 따르면, 추가적인 첨가제 없이 산화 그래핀을 잉크젯 프린터의 전도성 잉크로 사용하고 진공 상태에서의 열처리에 의한 환원 과정을 통해 그래핀 시트의 패턴을 손쉽게 제조할 수 있는 장점을 가진다. 더욱이, 본 발명에서 제조될 수 있는 그래핀 시트는 크기와 형태에 구애되지 않을 뿐만 아니라, 최소 선폭 60 um 의 길이와 높은 해상도를 가진다는 장점을 갖는다. 전기적 응용 측면에서 본다면, 상기 제조된 그래핀 시트는 낮은 표면 저항 값을 갖으며, 표면 저항이 손쉽게 조절 가능함에 따라 광대역 다이폴 안테나 전극으로의 응용이 가능하다는 장점을 갖는다.
Abstract:
PURPOSE: Fabrication of titanium dioxide nanofiber containing zinc oxide nanoparticles and an antibactericidal application of the same are provided to easily fabricate titanium dioxide nanofiber containing zinc oxide nanoparticles using a mixed solution of a titanium dioxide precursor, a zinc oxide precursor, and a polymer. CONSTITUTION: Fabrication of titanium dioxide nanofiber includes the following steps of: preparing the mixed solution of a titanium dioxide precursor, a zinc oxide precursor, polymer, and acetic acid; preparing polymer nanofiber, in which the titanium dioxide precursor and the zinc oxide precursor are mixed, by an electrospinning method; forming titanium dioxide from the titanium dioxide precursor by hydrolysis; and preparing titanium dioxide nanofiber containing zinc oxide nanoparticles by thermally treatment. The sizes of the voltages in the electrospinning method are in a range between 1-60kV. The thermal treatment temperature is in a range between 400-550°C, and the thermal treatment time is in a range between 1 and 4 hours.
Abstract:
PURPOSE: A manufacturing method of a graphene sheet, which is combined with titanium dioxide nanorods, and an application as a photocatalyst response to visible light is provided to remarkably reduce problems of combining in a limited area by using a non-hydrolysis sol-gel method. CONSTITUTION: A manufacturing method of a graphene sheet, which is combined with titanium dioxide nanorods comprises the following step; a graphene oxide solution dispersed in oleoylamine is manufactured by dispersing a graphite oxide to oleylamine using an ultrasonic generator; titanium chloride which is a titanium dioxide precursor is inserted to the graphene oxide solution dispersed in oleoylamine, and produces the graphene sheet which is combined with the titanium dioxide in a nanorod form; after the graphene sheet which is combined to titanium dioxide nanorods is dried, the graphene sheet heat-treated to induce the high crystallization of the titanium dioxide and the deoxidation of the graphene oxide.
Abstract:
PURPOSE: A method for manufacturing a high-sensitivity flexible chemical sensor manufacturing method based on a graphene sheet composite in which metal is attached by plasma processing is provided to control properties of graphene and the number of a functional group without a separate complex surface processing process by introducing plasma. CONSTITUTION: A method for a chemical sensor comprises: a step of generating graphene by a chemical vapor deposition while gradually increasing temperature from 800-1200°C; a step of stabilizing the graphene with a dry ice wind direction cooling device; a step of transferring the graphene on a flexible substrate; a step of introducing a surface functional group by plasma-processing the graphene transferred on the flexible substrate; and a step of forming a metal nano particle by using ultrasonic waves and manufacturing a nano composite by attaching the surface functional group to the metal nano particle through a coordinate bonding method. A detection member for detecting changes in electric properties of hydrogen gas is provided.
Abstract:
PURPOSE: A mass-producing method of a 1-D intrinsic conducting polymer nanomaterial is provided to obtain the conducting polymer nanomaterial with excellent heat resistance and conductivity, by using a dopant which consists of organic acid. CONSTITUTION: A mass-producing method of a 1-D intrinsic conducting polymer nanomaterial comprises: a step of manufacturing an organic acid aqueous solution by dispersing a dopant consisting of organic acid into distilled water(S101); a step of mixing an intrinsic conducting monomer into the organic acid aqueous solution(S103); a step of adding an initiator into the mixture, and polymerizing an intrinsic conducting polymer nanomaterial(S105); and a step of adding water or an organic solvent into the obtained polymer, and separating the intrinsic conducting polymer nanomaterial(S107). The organic acid is one or more selected from benzene sulfonic acid, dodecyl benzene sulfonic acid, campa sulfonate, and P-toluene sulfonic acid. [Reference numerals] (AA) Start; (BB) End; (S101) Dispersing step; (S103) Mixing step; (S105) Polymerizing step; (S107) Separating step