Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group.In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
A fluoropolymer coating composition is described comprising an aqueous liquid medium, fluoropolymer particles dispersed in the aqueous liquid medium, and at least one aziridine compound. The aziridine compound comprises at least two aziridine groups (i.e. polyaziridine) or at least one aziridine group and at least one alkoxy silane group. In another embodiment, an article is described comprising a substrate wherein a surface of the substrate comprises a coating comprising fluoropolymer particles; and a reaction product of at least one aziridine compound comprising at least two aziridine groups or at least one aziridine group and at least one alkoxy silane group. The coating can be utilized as a primer for bonding a non-fluorinated substrate to a fluoropolymer film and/or the coating can be used as an (e.g. outer exposed) surface layer. In some embodiments, the article may be the (e.g. backside) film of a photovoltaic module.
Abstract:
The present invention provides an anti-corrosion solution comprising reaction products of the following reaction components: 1-30 wt % of a tetraalkyl orthosilicate, with the total weight of said anti-corrosion solution being 100 wt %; 0.2-6.0 wt % of a metal salt, with the total weight of said anti-corrosion solution being 100 wt %, said metal salt comprising one or more selected from the group consisting of: an aluminum salt, a strontium salt, a chromium salt, a zirconium salt and a cerium salt; an acid; 3-90 wt % of water, with the total weight of said anti-corrosion solution being 100 wt %; 4-95 wt % of an alcohol, with the total weight of said anti-corrosion solution being 100 wt %; said anti-corrosion solution having a pH value less than or equal to 4. The anti-corrosion solution provided by the present invention can form a dense transparent anti-corrosion coating layer on a substrate surface, the anti-corrosion coating layer having a good corrosion resistance performance.
Abstract:
Articles having poly(vinyl alcohol) (PVA) and silica nanoparticle multilayer coatings are provided. More specifically, the articles include a substrate and a multilayer coating attached to the substrate. The multilayer coating includes a silica layer that is the outermost layer, the silica layer containing acid-sintered interconnected silica nanoparticles arranged to form a continuous three-dimensional porous network. The multilayer coating also includes a PVA layer disposed between a surface of the substrate and the outermost silica layer. The PVA and silica nanoparticle coatings can be used on a large variety of substrates and tend to be resistant to impacts, scratches, wet abrasions, soil and fog.
Abstract:
A method of making a coatable composition includes: providing a first composition comprising silica nanoparticles dispersed in an aqueous liquid vehicle, wherein the silica nanoparticles have an average particle size of less than or equal to 100 nanometers, wherein the first composition has a pH greater than 6; acidifying the first composition to a pH of less than or equal to 4 using inorganic acid to provide a second composition; and dissolving at least one metal compound in the second composition to form the coatable composition, wherein said at least one metal compound comprises a titanium compound. Coatable compositions and photocatalytic compositions, preparable by the method, are also disclosed. Photocatalytic articles including the photocatalytic compositions are also disclosed.
Abstract:
A method of making a coatable composition includes: a) providing a initial composition comprising silica nanoparticles dispersed in an aqueous liquid medium, wherein the silica nano articles have a particle size distribution with an average particle size of less than or equal to 100 nanometers, and wherein the silica sol has a pH greater than 6; b) acidifying the initial composition to a pH of less than or equal to 4 using inorganic acid to provide an acidified composition; and c) dissolving at least one metal compound in the acidified composition to provide a coatable composition. Coatable compositions and soil-resistant compositions, preparable by the method, are also disclosed. Soil-resistant articles including the soil-resistant compositions are also disclosed.
Abstract:
This invention relates to coating compositions useful for the prevention and/or removal of limescale and/or soap scum. More specifically, the present invention is directed to a coating composition comprising acidified silica nanoparticles and a sulfonated polymer. The present invention is further directed to a method for the prevention and/or removal of limescale and/or soap scum from the surface of a substrate. The invention also relates to the use of such a coating composition for the prevention and/or removal of limescale and/or soap scum from the surface of a substrate.
Abstract:
The present disclosure generally relates to durable solar mirror films, methods of making durable solar mirror films, and constructions including durable solar mirror films. In one embodiment, the present disclosure relates to a solar mirror film comprising: a multilayer optical film layer including having a coefficient of hygroscopic expansion of less than about 30 ppm per percent relative humidity; and a reflective layer having a coefficient of hygroscopic expansion.
Abstract:
Material comprising sub-micrometer particles dispersed in a polymeric matrix. The materials are useful in article, for example, for numerous applications including display applications (e.g., liquid crystal displays (LCD), light emitting diode (LED) displays, or plasma displays); light extraction; electromagnetic interference (EMI) shielding, ophthalmic lenses; face shielding lenses or films; window films; antireflection for construction applications, and construction applications or traffic signs.